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Summary

In many scenarios, we want our model of the world to be able to grow in complexity as we collect
more information from the world around us. This growth reflects that we learn more about the
world as we acquire more data. And we wish to explicitly model both rare events as well as the po-
tential for new events or latent outcomes that we have not yet experienced or collected data on. In
this project, we have developed new model representations that enable fast and efficient inference,
as well as provided and proved error bounds for certain classes of approximation. Our experiments
below were on simulated data. We started preliminary work on the Innovian Time-Series Anesthe-
sia Dataset but were given access to that data a few weeks before the project concluded and were
not able to run our full experiments in that time. We did not create any new data sets as part of this
project.
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Introduction

In many data sets, we can view the data points as exhibiting a collection of underlying traits. For
instance, each document in the New York Times might touch on a number of topics or themes, an
individual’s genetic data might be a product of the populations to which their ancestors belonged,
or a user’s activity on a social network might be dictated by their varied personal interests. When
the traits are not directly observed, a common approach is to model each trait as having some
frequency or rate in the broader population [Airoldi et al., 2014]. The inferential goal is to learn
these rates as well as whether—and to what extent—each data point exhibits each trait. Since the
traits are unknown a priori, their cardinality is also typically unknown.

As a data set grows larger, we can reasonably expect the number of traits to increase as well. In
the cases above, for example, we expect to uncover more topics as we read more documents, more
ancestral populations as we examine more individuals’ genetic data, and more unique interests as
we observe more individuals on a social network. Bayesian nonparametric (BNP) priors provide a
flexible, principled approach to creating models in which the number of exhibited traits is random,
can grow without bound, and may be learned as part of the inferential procedure. By generating a
countable infinity of potential traits—where any individual data point exhibits only finitely many—
these models enable growth in the number of observed traits with the size of the data set.

In practice, however, it is impossible to store a countable infinity of random variables in mem-
ory or learn the distribution over a countable infinity of variables in finite time. Conjugate priors
and likelihoods have been developed [Orbanz, 2010] that theoretically circumvent the infinite rep-
resentation altogether and perform exact Bayesian posterior inference [Broderick et al., 2017].
However, these priors and likelihoods are often just a single piece within a more complex gen-
erative model, and ultimately an approximate posterior inference scheme such as Markov Chain
Monte Carlo (MCMC) or variational Bayes (VB) is required. These approximation schemes often
necessitate a full and explicit representation of the latent variables.

One option is to approximate the infinite-dimensional prior with a related finite-dimensional
prior: that is, to replace the infinite collection of random traits by a finite subset of “likely” traits.
To do so, first enumerate the countable infinity of traits in the full model and write (ψk, θk) for
each paired trait ψk (e.g. a topic in a document) and its rate or frequency θk. Then the discrete
measure Θ :=

∑∞
k=1 θkδψk captures the traits/rates in a sequence indexed by k. The (ψk, θk) pairs

are random in the Bayesian model, so Θ is a random measure. In many cases, the distribution of Θ 
can be defined by specifying a sequence of simple, familiar distributions for the finite-dimensional 
ψk and θk, known as a sequential representation. Given a sequential representation of Θ, a natural 
way to choose a subset of traits is to keep the first K  <  ∞  t raits and discard the rest, resulting 
in an approximate measure ΘK . This approach is called truncation. Note that it is also possi-
ble to truncate by removing atoms with weights less than a specified threshold [Argiento et al.,
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2016, Muliere and Tardella, 1998], though this approach is not as easily incorporated in posterior
inference algorithms.

Sequential representations have been shown to exist for completely random measures
(CRMs) [Kingman, 1967, Ferguson and Klass, 1972], a large class of nonparametric priors that
includes such popular models as the beta process [Hjort, 1990, Kim, 1999] and the gamma process
[Ferguson and Klass, 1972, Kingman, 1975, Brix, 1999, Titsias, 2008, James, 2013]. Numerous
sequential representations of CRMs have been developed in the literature [Ferguson and Klass,
1972, Bondesson, 1982, Rosiński, 1990, 2001, James, 2014, Broderick et al., 2017]. CRM priors
are often paired with likelihood processes—such as the Bernoulli process [Thibaux and Jordan,
2007], negative binomial process [Zhou et al., 2012, Broderick et al., 2015], and Poisson likeli-
hood process [Titsias, 2008]. The likelihood process determines how much each trait is expressed
by each data point. Sequential representations also exist for normalized completely random mea-
sures (NCRMs) (sometimes referred to as normalized random measures with independent incre-
ments) [Perman et al., 1992, Perman, 1993, James, 2002, Pitman, 2003, Regazzini et al., 2003,
Lijoi and Prünster, 2010, James et al., 2009], which provide random distributions over traits, such
as the Dirichlet process [Ferguson, 1973, Sethuraman, 1994]. NCRMs are typically paired with a
likelihood that assigns each data point to a single trait using the NCRM as a discrete distribution.

Since (N)CRMs have many possible sequential representations, a method is required for deter-
mining which to use for the application at hand and, once a representation is selected, for choosing
a truncation level. Our main contributions enable the principled selection of both representation
and truncation level using approximation error:

1. We provide a comprehensive characterization of the different types of sequential representa-
tions for (N)CRMs, filling in many gaps in the literature of sequential representations along
the way. We classify these representations into two major groups: series representations,
which are constructed by transforming a homogeneous Poisson point process; and super-
position representations, which are the superposition of infinitely many Poisson point pro-
cesses with finite rate measures. We also introduce two novel sequential representations for
(N)CRMs.

2. We provide theoretical guarantees on the approximation error induced when truncating these
sequential representations. We give the error as a function of the prior process, the likeli-
hood process, and the level of truncation. While truncation error bounds for (N)CRMs have
been studied previously, past work has focused on specific combinations of (N)CRM priors
and likelihoods—in particular, the Dirichlet-multinomial [Sethuraman, 1994, Ishwaran and
James, 2001, Ishwaran and Zarepour, 2002, Blei and Jordan, 2006], beta-Bernoulli [Paisley
et al., 2012, Doshi-Velez et al., 2009], generalized beta-Bernoulli [Roy, 2014], and gamma-
Poisson [Roychowdhury and Kulis, 2015] processes. In the current work, we give much
more general results for bounding the truncation error.

Our results fill i n l arge g aps i n t he a nalysis o f t runcation e rror, w hich i s o ften m easured in 
terms of the L1 (a.k.a. total variation) distance between the data distributions induced by the full 
and truncated priors. We provide the first a nalysis o f t runcation e rror f or s ome s equential rep-
resentations of the beta process with Bernoulli likelihood [Thibaux and Jordan, 2007], for the 
beta process with negative binomial likelihood [Zhou et al., 2012, Broderick et al., 2015], and for 
the normalization of the generalized gamma process [Brix, 1999], the σ-stable process, and the
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generalized inverse gamma [Lijoi et al., 2005, Lijoi and Prünster, 2010] with discrete likelihood.
Moreover, even when truncation results already exist in the literature [Ishwaran and James, 2001,
Doshi-Velez et al., 2009, Paisley et al., 2012, Roychowdhury and Kulis, 2015], we improve on
those error bounds by a factor of two. The reduction arises from our use of the point process ma-
chinery of CRMs, circumventing the total variation bound used originally by Ishwaran and James
[2001, 2002] upon which most modern truncation analyses are built. We obtain our truncation
error guarantees by bounding the probability that data drawn from the full model will use a feature
that is not available to the truncated model. Thinking in terms of this probability provides a more
intuitive interpretation of our bounds that can be communicated to practitioners and used to guide
them in their choice of truncation level.

The remainder of this paper is organized as follows. In Section 4.1, we provide background
material on CRMs and establish notation. In our first main theoretical section, Section 4.2, we
describe seven different sequential CRM representations, including four series representations and
three superposition representations, two of which are novel. Next, we provide a general theoretical
analysis of the truncation error for series and superposition representations in Section 4.3. We
provide analogous theory for the normalized versions of each representation in Section 4.4 via an
infinite extension of the “Gumbel-max trick” [Gumbel, 1954, Maddison et al., 2014]. We deter-
mine the complexity of simulating each representation in Section 4.5. In Chapter 5, we summarize
our results (Table 1) and provide advice on how to select sequential representations in practice.
Proofs for all results developed in this paper are provided in the appendices.

4
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Methods, Assumptions, and Procedures

3.1 Background

3.1.1 CRMs and truncation
Consider a Poisson point process on R+ := [0, ∞) with rate measure ν(dθ) such that

ν(R+) =∞ and
∫

min(1, θ)ν(dθ) <∞. (1)

Such a process generates a countable infinity of values (θk)
∞
k=1, θk ∈ R+, having an almost surely

finite sum
∑∞

k=1 θk < ∞. In a BNP trait model, we interpret each θk as the rate or frequency
of the k-th trait. Typically, each θk is paired with a parameter ψk associated with the k-th trait
(e.g., a topic in a document or a shared interest on a social network). We assume throughout that
ψk ∈ Ψ for some space Ψ and ψk

i.i.d.∼ G for some distributionG. Constructing a measure by placing
mass θk at atom location ψk results in a completely random measure (CRM) [Kingman, 1967]. As
shorthand, we will write CRM(ν) for the completely random measure generated as just described:

Θ :=
∑
k

θkδψk ∼ CRM(ν).

The trait distribution G is left implicit in the notation as it has no effect on our results. Further,
the possible fixed-location and deterministic components of a CRM [Kingman, 1967] are not con-
sidered here for brevity; these components can be added (assuming they are purely atomic) and
the analysis modified without undue effort. The CRM prior on Θ is typically combined with a
likelihood that generates trait counts for each data point. Let h(· | θ) be a proper probability mass
function on N ∪ {0} for all θ in the support of ν (though the present work may be easily extended
to likelihoods with support in R). Then a collection of conditionally independent observations
X1:N := {Xn}Nn=1 given Θ are distributed according to the likelihood process LP(h,Θ), i.e.

Xn :=
∑
k

xnkδψk
i.i.d.∼ LP(h,Θ),

if xnk ∼ h(x | θk) independently across k and i.i.d. across n. The desideratum that each Xn

expresses a finite number of traits is encoded by the assumption that∫
(1− h(0 | θ))ν(dθ) <∞. (2)

5
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Since the trait counts are typically latent in a full generative model specification, define the ob-
served data Yn |Xn

indep∼ f(· |Xn) for a conditional density f with respect to a measure µ on some
space. For instance, if the sequence (θk)

∞
k=1 represents the topic rates in a document corpus, Xn

might capture how many words in document n are generated from each topic and Yn might be the
observed collection of words for that document.

Since the sequence (θk)
∞
k=1 is countably infinite, it may be difficult to simulate or perform

posterior inference in this model. One approximation scheme is to define the truncation ΘK :=∑K
k=1 θkδψk . Since it is finite, the truncation ΘK can be used for exact simulation or in posterior

inference—but some error arises from not using the full CRM Θ. To quantify this error, consider
its propagation through the above Bayesian model. Define Z1:N and W1:N for ΘK analogous to the
definitions of X1:N and Y1:N for Θ:

Zn |ΘK
i.i.d.∼ LP(h,ΘK), Wn |Zn

indep∼ f(· |Zn), n = 1, . . . , N.

A standard approach to measuring the distance between Θ and ΘK is to use the L1 metric between
the marginal densities pN,∞ and pN,K (with respect to some measure µ) of the final observations
Y1:N and W1:N [Ishwaran and James, 2001, Doshi-Velez et al., 2009, Paisley et al., 2012]:

1

2
‖pN,∞ − pN,K‖1 :=

1

2

∫
y1:N

|pN,∞(y1:N)− pN,K(y1:N)| µ(dy1:N).

All of our bounds on 1
2
‖pN,∞ − pN,K‖1 are also bounds on the probability that X1:N contains a

feature that is not in the truncation ΘK (cf. Sections 4.3 and 4.4). This interpretation may be easier 
to digest since it does not depend on the observation model f and is instead framed in terms of the 
underlying traits the practitioner is trying to estimate.

3.1.2 The gamma-Poisson process
To illustrate the practical application of the theoretical developments in this work, we provide a 
number of examples throughout involving the gamma process [Brix, 1999], denoted ΓP(γ, λ, d), 
with discount parameter d ∈ [0, 1), scale parameter λ > 0, mass parameter γ > 0, and rate measure

ν(dθ) = γ
λ1−d

Γ(1− d)
θ−d−1e−λθdθ.

Setting d = 0 yields the undiscounted gamma process [Ferguson and Klass, 1972, Kingman, 1975,
Titsias, 2008]. The gamma process is often paired with a Poisson likelihood,

h(x | θ) =
θx

x!
e−θ.

Throughout the present work, we use the rate parametrization of the gamma distribution (to match
the gamma process parametrization), for which the density is given by

Gam(x; a, b) =
ba

Γ(a)
xa−1e−bx.

Section 4.6 provides additional example applications of our theoretical results for two other CRMs: 
the beta process BP(γ, α, d) [Teh and Görür, 2009, Broderick et al., 2012] with Bernoulli or neg-
ative binomial likelihood, and the beta prime process BPP(γ, α, d) [Broderick et al., 2017] with 
odds-Bernoulli likelihood.

6
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been used: series representations of the form

3.2 Sequential representations
Sequential representations are at the heart of the study of truncated CRMs. They provide an itera-
tive method that can be terminated at any point to yield a finite approximation to the infinite pro-
cess, where the choice of termination point determines the accuracy of the approximation. Thus, 
the natural first s tep i n p roviding a  c oherent t reatment o f t runcation a nalysis i s t o d o t he same 
for sequential representations. In past work, tw∑o 

∞
major classes of sequential representation have
k=1 θkδψk , and superposition representations of

the form
∑∞

k=1

∑Ck
i=1 θkiδψki , where each inner sum of Ck atoms is itself a CRM. This section ex-

amines four series representations [Ferguson and Klass, 1972, Bondesson, 1982, Rosiński, 1990, 
2001] and three superposition representations (two of which are novel) [Broderick et al., 2012, 
2017, James, 2014]. We show how previously-developed sequential representations for specific 
CRMs fit into these seven general representations. Finally, we discuss a stochastic mapping proce-
dure that is useful in obtaining new representations from the transformation of others. Proofs for
the results in this section may be found in Appendix A.2.

3.2.1 Series representations
Series representations arise from the transformation of a homogeneous Poisson point process

[Rosiński, 2001]. They tend to be somewhat difficult to analyze due to the dependence between 
the atoms but also tend to produce very simple representations∑k

with small
i.i.d.
truncation error (cf. Sec-

tion 4.3 and Chapter 5). Throughout the paper we let Γk = E`, E` ∼ Exp(1), be the ordered
`=1

jumps of a unit-rate homogeneous Poisson process on R+, let ν be a measure on R+ satisfying the 
basic conditions in Eq. (1), and letψ k 

i.i.d.∼ G.

Inverse-Lévy [Ferguson and Klass, 1972] Define ν ←(u) : = inf {x : ν ([x, ∞)) ≤ u}, the in-
verse of the tail measuer ν([x, ∞)). We say Θ has an inverse-Lévy representation and write
Θ← IL-Rep(ν) if

Θ =
∞∑
k=1

θkδψk , with θk = ν←(Γk).

Ferguson and Klass [1972] showed that Θ ← IL-Rep(ν) implies Θ ∼ CRM(ν). The inverse-
Lévy representation is analogous to the inverse CDF method for generating an arbitrary random
variable from a uniform random variable, with the homogenous Poisson process playing the role
of the uniform random variable. It is also the optimal sequential representation in the sense that the
sequence θk that it generates is non-increasing. While an elegant and general approach, simulat-
ing the inverse-Lévy representation is difficult, as inverting the function ν ([x,∞)) is analytically
intractable except in a few cases.

Example 4.2.1 (Gamma process, ΓP(γ, λ, 0)). We have ν([x,∞)) = γλE1(λx), where E1(x) :=∫∞
x
u−1e−u du is the exponential integral function [Abramowitz and Stegun, 1964]. The inverse-

Lévy representation for ΓP(γ, λ, 0) is thus

Θ =
∞∑
k=1

λ−1E−1
1 (γ−1λ−1Γk)δψk .

7
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Neither E1 nor its inverse can be computed in closed form, so one must resort to numerical ap-
proximations.

Bondesson [Bondesson, 1982] We say Θ has a Bondesson representation and write Θ ←
B-Rep(c, g) if for c > 0 and g a density on R+,

Θ =
∞∑
k=1

θkδψk , with θk = Vke
−Γk/c, Vk

i.i.d.∼ g.

Theorem 4.2.1 shows that Bondesson representations can be constructed for a large, albeit re-
stricted, class of CRM rate measures. We offer a novel proof of Theorem 4.2.1 in Appendix A.2
using the induction strategy introduced by Banjevic et al. [2002]. Similar proof ideas are also used
to prove truncation error bounds for sequential representations in Section 4.3. We use a slight abuse
of notation for brevity: if ν(dθ) is a measure on R+ that is absolutely continuous with respect to
Lebesgue measure, then ν(θ) is the density of ν(dθ) with respect to the Lebesgue measure.

Theorem 4.2.1 (Bondesson representation [Bondesson, 1982]). Let ν(dθ) = ν(θ)dθ be a
rate measure satisfying Eq. (1). If θν(θ) is nonincreasing, limθ→∞ θν(θ) = 0, and cν :=
limθ→0 θν(θ) <∞, then gν(v) := −c−1

ν
d
dv

[vν(v)] is a density on R+ and

Θ← B-Rep(cν , gν) implies Θ ∼ CRM(ν).

Example 4.2.2 (Bondesson representation for ΓP(γ, λ, 0)). The following representation for the
gamma process with d = 0 was described by Bondesson [1982] and Banjevic et al. [2002]. Since
θν(θ) = γλe−λθ is non-increasing and cν = limθ→0 θν(θ) = γλ, we obtain gν(v) = λe−λv =
Exp(v;λ). Thus, it follows from Theorem 4.2.1 that if Θ ← B-Rep(γλ,Exp(λ)), then Θ ∼
ΓP(γ, λ, 0). The condition that θν(θ) is non-increasing fails to hold if d > 0, so we cannot apply
Theorem 4.2.1 to ΓP(γ, λ, d) when d > 0.

Thinning [Rosiński, 1990] Using the nomenclature of Rosiński [2001], we say Θ has a thinning
representation and write Θ ← T-Rep(ν, g) if g is a probability measure on R+ such that ν is
absolutely continuous with respect to g, i.e. ν � g, and

Θ =
∞∑
k=1

θkδψk , with θk = Vk1

(
dν

dg
(Vk) ≥ Γk

)
, Vk

i.i.d.∼ g.

Rosiński [1990] showed that Θ ← T-Rep(ν, g) implies Θ ∼ CRM(ν). Note that Γk
a.s.→ ∞ as

k →∞, so the probability that dν
dg

(Vk) ≥ Γk is decreasing in k. Thus, this representation generates
atoms with θk = 0 (which have no effect and can be removed) increasingly frequently and becomes
inefficient as k →∞.

Example 4.2.3 (Thinning representation for ΓP(γ, λ, d)). If we let g = Gam(1 − d, λ), then the
thinning representation for ΓP(γ, λ, d) is

Θ =
∞∑
k=1

Vk1(VkΓk ≤ γ)δψk , with Vk
i.i.d.∼ Gam(1− d, λ).
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Rejection [Rosiński, 2001] Using the nomenclature of Rosiński [2001], we say Θ has a rejection
representation and write Θ← R-Rep(ν, µ) if µ is a measure on R+ satisfying Eq. (1) and dν

dµ
≤ 1,

and

Θ =
∞∑
k=1

θkδψk , with θk = Vk1

(
dν

dµ
(Vk) ≥ Uk

)
, (Vk)k∈N ∼ PoissP(µ),

Uk
i.i.d.∼ Unif[0, 1].

Rosiński [2001] showed that Θ ← R-Rep(ν, µ) implies Θ ∼ CRM(ν). This representation is
very similar to the thinning representation, except that the sequence (Vk)k∈N is generated from a
Poisson process on R+ rather than i.i.d. This allows Vk

a.s.→ 0 as k → ∞, causing the frequency
of generating ineffective atoms θk = 0 to decay as k → ∞, assuming µ is appropriately chosen
such that dν

dµ
(θ) → 1 as θ → 0. This representation can thus be constructed to be more efficient

than the thinning representation. We can calculate the efficiency in terms of the expected number
of rejections (that is, the number of θk that are identically zero):

Proposition 4.2.2. For R-Rep(ν, µ), the expected number of rejections is

E

[
∞∑
k=1

1(θk = 0)

]
=

∫ (
1− dν

dµ
(x)

)
µ(dx).

Remark. If µ and ν can be written as densities with respect to Lebesgue measure, then the integral
in Proposition 4.2.2 can be rewritten as

∫
(µ(x)− ν(x))dx.

Example 4.2.4 (Rejection representation for ΓP(γ, λ, 0)). Following Rosiński [2001], consider
µ(dθ) = γλθ−1(1 + λθ)−1dθ. We call CRM(µ) the Lomax process, LomP(γ, λ−1), after
the related Lomax distribution. We can use the inverse-Lévy method analytically with µ since
µ←(u) = 1

λ(e(γλ)−1u−1)
. Thus, the rejection representation of ΓP(γ, λ, 0) is

Θ =
∞∑
k=1

Vk1(Uk ≤ (1 + λVk)e
−λVk)δψk , with Vk =

1

λ(e(γλ)−1Γk − 1)
, Uk

i.i.d.∼ Unif[0, 1].

Unlike in the thinning construction given in Example 4.2.3, only a finite number of rates will be
set to zero almost surely. In particular, the expected number of rejections is γλcγ , where cγ is the
Euler-Mascheroni constant.

Example 4.2.5 (Rejection representation for ΓP(γ, λ, d), d > 0). For the case of d > 0, we instead
use µ(dθ) = γ λ1−d

Γ(1−d)
θ−1−ddθ. We can again use the inverse-Lévy method analytically with µ since

µ←(u) = (γ′u−1)1/d, where γ′ := γ λ1−d

dΓ(1−d)
. The rejection representation is then

Θ =
∞∑
k=1

Vk1(Uk ≤ e−λVk)δψk , with Vk = (γ′Γ−1
k )1/d, Uk

i.i.d.∼ Unif[0, 1].

The expected number of rejections is γ λ
1−d

d
, so the representation is efficient for large d, but ex-

tremely inefficient when d is small.
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3.2.2 Superposition representations
Superposition representations arise as an infinite sum of CRMs with finite ra te me asure. These 
tend to be easier to analyze than series representations as they decouple atoms between the summed 
CRMs, but can produce representations with larger truncation error (cf. Section 4.3 and Chapter 5).
Throughout, let ν be a measure on R+ satisfying the basic conditions in Eq. (1), and letψ k 

i.i.d.∼ G.
Decoupled Bondesson We say Θ has a decoupled Bondesson representation and write Θ ←
DB-Rep(c, g, ξ) if for c > 0, ξ > 0, and g a density on R+,

Θ =
∞∑
k=1

Ck∑
i=1

θkiδψki , with Ck
i.i.d.∼ Poiss(c/ξ), θki = Vkie

−Tki , (3)

Tki
indep∼ Gam(k, ξ), Vki

i.i.d.∼ g.

This is a novel superposition representation, though special cases are already known [Paisley et al.,
2010, Roychowdhury and Kulis, 2015]. Theorem 4.2.3 shows that the decoupled Bondesson rep-
resentation applies to the same class of CRMs as the Bondesson representation from Section 4.2.1.

Theorem 4.2.3 (Decoupled Bondesson representation). Let ν(dθ) = ν(θ)dθ, cν , and gν be as
specified in Theorem 4.2.1. Then for any fixed ξ > 0,

Θ← DB-Rep(cν , gν , ξ) implies Θ ∼ CRM(ν).

The proof of Theorem 4.2.3 in Appendix A.2 generalizes the arguments from Paisley et al.
[2010] and Roychowdhury and Kulis [2015]. The free parameter ξ controls the number of atoms
generated for each outer sum index k; its principled selection can be made by trading off compu-
tational complexity (cf. Section 4.5) and truncation error (cf. Section 4.3).

Example 4.2.6 (Decoupled Bondesson representation for ΓP(γ, λ, 0)). Arguments parallel-
ing those made in Example 4.2.2 show that the ΓP(γ, λ, 0) representation from Roychowd-
hury and Kulis [2015] follows directly from an application of Theorem 4.2.3: if Θ ←
DB-Rep(γλ,Exp(λ), ξ), then Θ ∼ ΓP(γ, λ, 0). As in the Bondesson representation setting, The-
orem 4.2.3 does not apply to ΓP(γ, λ, d) when d > 0 because the condition that θν(θ) is non-
increasing fails to hold.

Size-biased [Broderick et al., 2017, James, 2014] Let π(θ) := h(0 | θ). We say Θ has a size-
biased representation and write Θ← SB-Rep(ν, h) if

Θ =
∞∑
k=1

Ck∑
i=1

θkiδψki , with Ck
indep∼ Poiss (ηk) ,

θki
indep∼ 1

ηk
π(θ)k−1 (1− π(θ)) ν(dθ), (4)

ηk :=

∫
π(θ)k−1 (1− π(θ)) ν(dθ).

Broderick et al. [2017] and James [2014] showed that Θ ← SB-Rep(ν, h) implies Θ ∼ CRM(ν). 
If the rate measure ν and the likelihood h are selected to be a conjugate exponential family then,
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noting that
∑∞

x=1 h(x | θ) = 1 − π(θ), the rate θki can be sampled from a mixture of exponential
family distributions:

θki | zki
indep∼ 1

ηkzki
h(zki | θ)π(θ)k−1ν(dθ), zki

indep∼ Categorical ((ηkx/ηk)
∞
x=1) ,

ηkx :=

∫
h(x | θ)π(θ)k−1ν(dθ).

Example 4.2.7 (Size-biased representation for ΓP(γ, λ, d)). For the Gamma process, values for
ηkx and ηk can be found using integration by parts and the standard gamma distribution integral,
while θki | zki is sampled from a gamma distribution by inspection:

ηkx =
γλ1−dΓ(x− d)

x!Γ(1− d)(λ+ k)x−d
, ηk =

{
γλ1−d

d

(
(λ+ k)d − (λ+ k − 1)d

)
d > 0

γλ (log(λ+ k)− log(λ+ k − 1)) d = 0
,

θki | zki
indep∼ Gam(x− d, λ+ k).

Power-law We say Θ has a power-law representation and write Θ ← PL-Rep(γ, α, d, g) if for
γ > 0, 0 ≤ d < 1, α > −d, and g a density on R+,

Θ =
∞∑
k=1

Ck∑
i=1

θkiδψki , with Ck
i.i.d.∼ Poiss(γ), θki = VkiUkik

k−1∏
j=1

(1− Ukij), (5)

Vki
i.i.d.∼ g, Ukij

indep∼ Beta(1− d, α + jd).

This is a novel superposition representation, although it was previously developed in the special
case of the beta process (where g(v) = δ1) [Broderick et al., 2012]. The name of this representation
arises from the fact that it exhibits Types I and II power-law behavior [Broderick et al., 2012] under
mild conditions when d > 0, as we show in Theorem A.2.1 in the appendix (note, however, that
it will not exhibit power-law behavior when d = 0). Theorem 4.2.5 below shows the conditions
under which Θ ← PL-Rep(γ, α, d, g) implies Θ ∼ CRM(ν). Its proof in Appendix A.2 relies on
the notion of stochastic mapping (Lemma 4.2.4), a powerful technique for transforming one CRM
into another. Note that in Lemma 4.2.4, the case where u is a deterministic function of θ via the
mapping u = τ(θ) may be recovered by setting κ(θ, du) = δτ(θ).

Lemma 4.2.4 (CRM stochastic mapping). Let Θ =
∑∞

k=1 θkδψk ∼ CRM(ν). Then for any proba-
bility kernel κ(θ, du), we have κ(Θ) ∼ CRM(νκ), where

κ(Θ) :=
∞∑
k=1

ukδψk , uk | θk ∼ κ(θk, ·), and νκ(du) :=

∫
κ(θ, du)ν(dθ).

Theorem 4.2.5 (Power-law representation). Let ν(dθ) = ν(θ)dθ be a rate measure satisfying
Eq. (1), and let gν be a density on R+ such that

ν(u) =

∫
θ−1gν

(
uθ−1

)
νBP (dθ) ,
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where

νBP(dθ) = γ
Γ(α + 1)

Γ(1− d)Γ(α + d)
1 [θ ≤ 1] θ−1−d(1− θ)α+d−1dθ

is the rate measure for the beta process BP(γ, α, d) from Eq. (24). Then

Θ← PL-Rep(γ, α, d, gν) implies Θ ∼ CRM(ν).

Example 4.2.8 (Power-law representation for ΓP(γ, λ, d)). If we choose gν = Gam(λ, λ), then
using the change of variable w = u(θ−1 − 1),∫

θ−1gν
(
uθ−1

)
νBP (dθ)

= γλ
λλ

Γ(1− d)Γ(λ+ d)
uλ−1

∫
θ−λ−d−1e−λuθ

−1

(1− θ)λ+d−1 dθ du

= γλ
λλ

Γ(1− d)Γ(λ+ d)
u−1−de−λu

∫
wλ+d−1e−λw dw du

= γ
λ1−d

Γ(1− d)
u−1−de−λu du.

It follows immediately from Theorem 4.2.5 that if Θ ← PL-Rep(γ, λ, d, Gam(λ, λ)), then Θ ∼ 
ΓP(γ, λ, d). To the best knowledge of the authors, this power-law representation for the gamma 
process is novel.

3.3 Truncation analysis

Each of the sequential representations developed in Section 4.2 shares a common structural 
element—an outer infinite s um—which i s r esponsible f or g enerating a  c ountably i nfinite num-
ber of atoms in the CRM. In this section, we terminate these outer sums at a finite truncation level 
K ∈ N, resulting in a truncated CRM ΘK possessing a finite number of atoms. We develop upper 
bounds on the error induced by this truncation procedure. All of the truncated CRM error bounds 
in this section rely on Lemma 4.3.1, which is a tightening (by a factor of two) of the bound in Ish-
waran and James [2001, 2002] (for its generalization to arbitrary discrete random measures, see 
Lemma A.3.1). Proposition 4.3.2 shows that the bound in Lemma 4.3.1 is tight without further 
assumptions on the data likelihood f .

Lemma 4.3.1 (CRM protobound). Let Θ ∼ CRM(ν). For any truncation ΘK , if

Xn |Θ
i.i.d.∼ LP(h,Θ), Zn |ΘK

i.i.d.∼ LP(h,ΘK),

Yn |Xn
indep∼ f(· |Xn), Wn |Zn

indep∼ f(· |Zn),

then, with pN,∞ and pN,K denoting the marginal densities of Y1:N and W1:N , respectively,

1

2
‖pN,∞ − pN,K‖1 ≤ 1− P (supp(X1:N) ⊆ supp(ΘK)) ,
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Proposition 4.3.2 (Protobound tightness). If G is non-atomic and Ψ is Borel, then for any δ > 0,
there exists a likelihood f such that Lemma 4.3.1 is tight up to a factor of 1− δ.

The proof of all results in this section (including Lemma 4.3.1 and Proposition 4.3.2) can
be found in Appendix A.3. All of the provided truncation results use the generative model in
Lemma 4.3.1, and are summarized in Table 1 in Chapter 5. Throughout this section, for a given
likelihood model h(x | θ) we define π(θ) := h(0 | θ) for notational brevity. The asymptotic behav-
ior of truncation error bounds is specified with tilde notation:

a(K) ∼ b(K), K →∞ ⇐⇒ lim
K→∞

a(K)

b(K)
= 1.

3.3.1 Series representations
Each of the series representations can be viewed a functional of a standard Poisson point process
and a sequence of i.i.d. random variables with some distribution g on R+. In particular, we may 
write each in the form

Θ =
∞∑
k=1

θkδψk , with θk = τ(Vk,Γk), Vk
i.i.d.∼ g, (6)

where Γk are the jumps of a unit-rate homogeneous Poisson point process on R+, and τ : R+ ×
R+ → R+ is a non-negative measurable function such that limu→∞ τ(v, u) = 0 for g-almost every
v. The truncated CRM then takes the form

ΘK :=
K∑
k=1

θkδψk .

Theorem 4.3.3 provides a general truncation error bound for series representations of the form
Eq. (6), specifies its range, and guarantees that the bound decays to 0 as K →∞.

Theorem 4.3.3 (Series representation truncation error). The error in approximating a series rep-
resentation of Θ with its truncation ΘK satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1− e−BN,K ≤ 1,

where

BN,K :=

∫ ∞
0

(
1− E

[
π (τ (V, u+GK))N

])
du, (7)

G0 := 0, GK
indep∼ Gam(K, 1) for K ≥ 1, and V indep∼ g. Furthermore, ∀N ∈ N, limK→∞BN,K = 0.

Remark. An alternate form of BN,K that is sometimes easier to use in practice can be found by
applying the standard geometric series formula to Eq. (7), which yields

BN,K =
N∑
n=1

∫ ∞
0

E
[
π (τ (V, u+GK))n−1 (1− π (τ (V, u+GK)))

]
du.
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A simplified upper bound on BN,K can be derived by noting that π(θ) ≤ 1, so

BN,K ≤ N

∫ ∞
0

(1− E [π (τ (V, u+GK))]) du. (8)

This bound usually gives the same asymptotics in K as Eq. (7).

The main task in using Theorem 4.3.3 to develop a truncation error bound for a series represen-
tation is evaluating the integrand in the definition of BN,K . Thus, we next evaluate the integrand
and provide expressions of the truncation error bound for the four series representations outlined
in Section 4.2.1. Throughout the remainder of this section, GK is defined as in Theorem 4.3.3,
F0 ≡ 1, and FK is the CDF of GK .

Inverse-Lévy representation For this representation we have

τ(v, u) = ν←(u) := inf {y : ν ([y,∞)) ≤ u} .

To evaluate the bound in Eq. (8), we use the transformation of variables x = ν←(u+GK) and the
fact that for a, b ≥ 0, ν←(a) ≥ b ⇐⇒ a ≤ ν ([b,∞)) to conclude that

BN,K ≤ N

∫ ∞
0

FK(ν[x,∞))(1− π(x)) ν(dx). (9)

Recent work on the inverse-Lévy representation has developed Monte Carlo estimates of the error
of the truncated random measure moments for those ν ([x,∞)) with known inverse ν← [Arbel and
Prünster, 2017]. In contrast, the result above provides an explicit bound on the L1 truncation error.
Our bound does not require knowing ν←, which is often the most challenging aspect of applying
the inverse-Lévy representation.

Example 4.3.1 (IL-Rep truncation for LomP(γ, λ−1) with Poisson likelihood). Recall from Ex-
ample 4.2.4 that the Lomax process LomP(γ, λ−1) is the CRM with rate measure ν(dθ) =
γλθ−1(1 + λθ)−1dθ, so ν[x,∞) = γλ log{1 + (λx)−1}. Using Eq. (9), we have

BN,K ≤ Nγλ

∫ ∞
0

FK(γλ log{1 + (λx)−1})(1− e−x)x−1(1 + λx)−1dx.

Since FK(t) ≤ tK/K! ≤ (3t/K)K , for any a > 0 the integral is upper bounded by∫ a

0

(1 + λx)−1dx+ FK

(
γλ log

{
1 +

1

λa

})∫ ∞
a

x−1(1 + λx)−1dx

≤ a+ FK

(
γλ log

{
1 +

1

λa

})
log

{
1 +

1

λa

}
≤ λ−1(eb − 1)−1 + b(3γλb/K)K where b := log{1 + (λa)−1}. (10)

Replacing (eb − 1)−1 with the approximation e−b and then setting the two terms in Eq. (10) equal,

we obtain b = KW0

({
3γλ

K+2
K+1 (K + 1)

1
K+1

}−1
)

, where W0 is the product logarithm function,

i.e.

(11)W0(y) = x ⇐⇒ xex = y.
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Thus, using the fact that e−t ≤ (et − 1)−1 and λ
K+2
K+1 (K + 1)

1
K+1 reaches its maximum at K =

max(0, eλ−1 − 1), we conclude that

BN,K ≤
2Nγ[1 + (3γλ)−1]

exp
(
KW0

(
{3γλmax(λ, e)}−1))− 1

∼ 2Nγ[1 + (3γλ)−1]e−KW0({3γλmax(λ,e)}−1) K →∞.

Bondesson representation For this representation we have

τ(v, u) = ve−u/c, g(dv) = −c−1 d

dv
(vν(v)) dv.

Writing the expectation over V explicitly as an integral with measure g(v)dv, using the trans-
formation of variables u = −c log x/v (so x = ve−u/c), and given the definition of g(v) =
−c−1 d

dv
(vν(v)) for the Bondesson representation, we have

BN,K ≤ N

∫ ∞
0

(
1− E

[
π
(
ve−GK/c

)])
ν(dv).

Example 4.3.2 (Truncation of the Bondesson representation for ΓP(γ, λ, 0)). Let G̃K
D
= GK/(γλ).

Since π(θ) = e−θ and c = γλ, we have∫ ∞
0

(
1− E

[
π(ve−GK/c)

])
ν(dv) = γλE

[∫ ∞
0

(1− e−ve−G̃K )v−1e−λvdv

]
= γλE

[
log(1 + e−G̃K/λ)

]
≤ γ E

[
e−G̃K

]
= γ

(
γλ

1 + γλ

)K
.

The second equality follows by using the power series for the exponential integral [Abramowitz
and Stegun, 1964, Chapter 5]. Thus,

BN,K ≤ Nγ

(
γλ

1 + γλ

)K
.

Thinning representation For this representation we have

τ(v, u) = v1

[
dν

dg
(v) ≥ u

]
, g any distribution on R+ s.t. ν � g.

Since π(0) = 1 by Lemma A.1.3, we have that 1 − π (v1(A)) = (1− π (v))1(A) for any event
A. Using this fact, we have

BN,K ≤ N

∫ ∞
0

(1− π(v))

∫ dν
dg

(v)

0

FK (u) du g(dv). (12)

Analytic bounds for the thinning representation of specific processes tend to be opaque and nota-
tionally cumbersome, so we simply compare its truncation error in Chapter 5 to the other repre-
sentations by numerical approximation of Eq. (12).
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Rejection representation Assume that we can use the inverse-Lévy representation to simulate
PoissP(µ). Then for the rejection representation we have

τ(v, u) = µ←(u)1

[
dν

dµ
(µ←(u)) ≥ v

]
, g(dv) = 1[0 ≤ v ≤ 1]dv,

where µ satisfies ν � µ, dν
dµ
≤ 1, and µ←(u) := inf {x : µ ([x,∞)) ≤ u}. Using the same

techniques as for the thinning and inverse-Lévy representations, we have that

BN,K ≤ N

∫ ∞
0

FK(µ[x,∞))(1− π(x)) ν(dx). (13)

Example 4.3.3 (R-Rep truncation for ΓP(γ, λ, 0) with Poisson likelihood). Using Eq. (13) and
the fact that 1− e−x ≤ x, we have

BN,K ≤ Nγλ

∫ ∞
0

FK(γλ log{1 + (λx)−1})e−λxdx. (14)

Arguing as in Example 4.3.1, we see that the integral in Eq. (14) is upper bounded by∫ a

0

e−λxdx+ FK

(
γλ log

{
1 +

1

λa

})∫ ∞
a

e−λxdx

≤ a+ λ−1FK

(
γλ log

{
1 +

1

λa

})
= λ−1

(
(eb − 1)−1 + (3γλb/K)K

)
, (15)

where b := log{1 + (λa)−1}. Replacing (eb − 1)−1 with the approximation e−b and then setting
the two terms in Eq. (15) equal to each other, we obtain b = KW0({3γλ}−1) (where W0 is defined
in Eq. (11)) and conclude that

BN,K ≤
2Nγ

eKW0({3γλ}−1) − 1
∼ 2Nγe−KW0({3γλ}−1) K →∞.

Example 4.3.4 (R-Rep truncation for ΓP(γ, λ, d) with Poisson likelihood, d > 0). We have

BN,K ≤ N
γλ1−d

Γ(1− d)

∫ ∞
0

FK(γ′x−d)(1− e−x)x−1−de−λxdx.

The integral can be upper bounded as∫ a

0

x−ddx+ FK(γ′a−d)

∫ ∞
a

(1 + e−x)x−1−de−λxdx

≤ (1− d)−1a1−d + Γ(−d)(λd − (1 + λ)d)(3γ′K−1a−d)K .

Setting the two terms equal and solving for a, we obtain

BN,K ≤ 2N
γλ1−d

Γ(2− d)
[(1− d)Γ(−d)]

d(1−d)
d(1−d)+K

[
3γλ1−d

dΓ(1− d)K

] Kd(1−d)
d(1−d)+K

∼ 2N
γλ1−d

Γ(2− d)

[
3γλ1−d

dΓ(1− d)

]d(1−d)

K−d(1−d) K →∞.
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3.3.2 Superposition representations
For superposition representations, the truncated CRM takes the form

ΘK :=
K∑
k=1

Ck∑
i=1

θkiδψki .

Let Θ+
K := Θ − ΘK denote the tail measure. By the superposition property of Poisson point

processes [Kingman, 1993], the tail measure is itself a CRM with some rate measure ν+
K and is

independent of ΘK :

Θ+
K =

∞∑
k=K+1

Ck∑
i=1

θkiδψki ∼ CRM
(
ν+
K

)
, Θ+

K ⊥⊥ ΘK , Θ = ΘK + Θ+
K . (16)

The following result provides a general truncation error bound for superposition representations,
specifies its range, and guarantees that the bound decays to 0 as K →∞.

Theorem 4.3.4 (Superposition representation truncation error). The error in approximating a su-
perposition representation of Θ ∼ CRM(ν) with its truncation ΘK satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1− e−BN,K ≤ 1,

where

BN,K :=

∫ (
1− π(θ)N

)
ν+
K(dθ). (17)

Furthermore, ∀N ∈ N, limK→∞BN,K = 0.

Remark. As for series representations, an alternate form of BN,K that is sometimes easier to use
can be found by applying the standard geometric series formula to Eq. (17):

BN,K =
N∑
n=1

∫
π(θ)n−1 (1− π(θ)) ν+

K(dθ).

A simplified upper bound on BN,K can be derived by noting that π(θ) ≤ 1, so

BN,K ≤ N

∫ ∞
0

(1− π (θ)) ν+
K(dθ).

This bound usually gives the same asymptotics in K as Eq. (17).

The main task in using Theorem 4.3.4 to develop a truncation error bound for a superposition
representation is determining its tail measure ν+

K . In the following, we provide the tail measure for
the three superposition representations outlined in Section 4.2.2.
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Decoupled Bondesson representation For each point process in the superposition, an average
of c/ξ atoms are generated with independent weights of the form V e−Tk where V indep∼ g and Tk

indep∼
Gam(k, ξ). Therefore, the tail measure is

ν+
K(dθ) =

c

ξ

∞∑
k=K+1

g̃k,ξ(θ)dθ,

where g̃k,ξ is the density of V e−Tk . The bound for the decoupled Bondesson representation can
therefore be expressed as

BN,K ≤ N
c

ξ

∞∑
k=K+1

E
[
1− π

(
V e−Tk

)]
.

Example 4.3.5 (Decoupled Bondesson representation truncation for ΓP(γ, λ, 0)). Using the fact
that 1− e−θ ≤ θ, we have

BN,K =
Nγλ

ξ

∞∑
k=K+1

E[1− π(Vk1e
−Tk1)] ≤ Nγλ

ξ

∞∑
k=K+1

E[Vk1e
−Tk1 ]

=
Nγλ

ξ

∞∑
k=K+1

1

λ

(
ξ

1 + ξ

)k
= Nγ

(
ξ

1 + ξ

)K
,

which is equivalent (up to a factor of 2) to the bound in Roychowdhury and Kulis [2015].

Size-biased representation The constructive derivation of the size-biased representation [Brod-
erick et al., 2017, proof of Theorem 5.1] immediately yields

ν+
K(dθ) = π(θ)Kν(dθ).

Therefore, the size-biased representation truncation error bound can be expressed using the formula
for ηk from Eq. (4) as

BN,K =
N∑
n=1

∫
π(θ)K+n−1(1− π(θ))ν(dθ) =

N∑
n=1

ηK+n. (18)

Example 4.3.6 (Size-biased representation truncation for ΓP(γ, λ, d)). For d > 0, the standard
gamma integral yields

ηk =

∫
π(θ)k−1(1− π(θ))ν(dθ) =

γλ1−d

d

(
(λ+ k)d − (λ+ k − 1)d

)
.

The sum from Eq. (18) is telescoping, so canceling terms,

BN,K ≤
γλ1−d

d

(
(λ+K +N)d − (λ+K)d

)
∼ γNλ1−dKd−1 K →∞,
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where the asymptotic result follows from Lemma A.1.4. To analyze the d = 0 case, we use
L’Hospital’s rule to take the limit of the integral:

lim
d→0

∫
π(θ)k−1(1− π(θ))ν(dθ) = γλ (log(λ+ k)− log(λ+ k − 1)) .

Canceling terms in the telescopic sum yields

BN,K ≤ γλ (log(λ+K +N)− log(λ+K)) ∼ γλNK−1 K →∞,

where the asymptotic result follows from an application of Lemma A.1.4.

Power-law representation For each point process in the superposition, an average of γ atoms
are generated with independent weights of the form V Uk

∏k−1
`=1 (1− U`), where V indep∼ g and U`

indep∼
Beta(1− d, α + `d). Therefore, the tail measure is

ν+
K(dθ) = γ

∞∑
k=K+1

g̃k(θ)dθ,

where g̃k is the density of the random variable V Uk
∏k−1

`=1 (1−U`). The truncation error bound may
be expressed as

BN,K ≤ Nγ
∞∑

k=K+1

E

[
1− π

(
V Uk

k−1∏
`=1

(1− U`)

)]
.

Example 4.3.7 (Power-law representation truncation for ΓP(γ, λ, d)). Let βk be a random variable
with density g̃k (with λ in the place of α). Using 1− e−θ ≤ θ, we have

∞∑
k=K+1

E[1− π(βk)] ≤
∞∑

k=K+1

E[βk] = E

[
∞∑

k=K+1

βk

]
=

K∏
k=1

λ+ kd

λ+ kd− d+ 1
,

where the final equality follows from Ishwaran and James [2001, Theorem 1]. Thus,

BN,K ≤ γN
K∏
k=1

λ+ kd

λ+ kd− d+ 1
∼ γN


(

λ
λ+1

)K
d = 0

Γ(λ+1
d )

Γ(λ+d
d )

K1−d−1
0 < d < 1

K →∞, (19)

where the 0 < d < 1 case in Eq. (19) follows by Lemma A.1.5 applied to

K∏
k=1

λ+ kd

λ+ kd− d+ 1
=

Γ((λ+ 1)/d)

Γ((λ+ d)/d)

Γ(λ/d+K + 1)

Γ(λ/d+K + d−1)
.
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X̃ Ñ

3.3.3 Stochastic mapping
We now show how truncation bounds developed elsewhere in this paper can be applied to CRM 
representations that have been transformed using Lemma 4.2.4. For Θ ∼ CRM(ν), we denote its 
transformation by Θ̃ = κ(Θ). For any object defined with respect to Θ, the corresponding object 
for Θ̃ is denoted with a tilde. For example, in place of N and X1:N (for Θ), we use Ñ and

1:

(for Θ̃). We make BN,K a function of π(θ) in the notation of Proposition 4.3.5; when one applies 
stochastic mapping to a CRM, one usually also wants to change the likelihood h(x | θ), and thus 
also changes π(θ) = h(0 | θ). The proof of Proposition 4.3.5 may be found in Appendix A.3.

Proposition 4.3.5 (Truncation error under a stochastic mapping). Consider a representation for

Θ ∼ CRM(ν) with truncation error bound BN,K(π). Then for any likelihood h̃(x |u), if Θ̃ is

h̃
a stochastic mapping of Θ under∫ the probability kernel κ(θ, du), its truncation error bound is 
B1,K (πκ,Ñ ), where πκ,Ñ (θ) := (0 | u)Ñ

 
κ(θ, du).

3.3.4 Hyperpriors
In practice, prior distributions are often placed on the hyperparameters of the CRM rate measure 
(i.e. γ, α, λ, d, etc.). We conclude our investigation of CRM truncation error by showing how 
bounds developed in this section can be modified to account for the use of h yperpriors. Note that 
we make the dependence of BN,K on the hyperparameters Φ explicit in the notation of Proposi-
tion 4.3.6.

Proposition 4.3.6 (CRM truncation error with a hyperprior). Given hyperparameters Φ, consider 
a representation for Θ | Φ ∼ CRM(ν), and let BN,K(Φ) be given by Eq. (7) (for a series repre-
sentation) or Eq. (17) (for a superposition representation). The error of approximating Θ with its 
truncation ΘK satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1− e−E[BN,K(Φ)] ≤ 1.

Example 4.3.8 (Decoupled Bondesson representation truncation for ΓP(γ, λ, 0)). A standard
choice of hyperprior for the mass γ is a gamma distribution, i.e. γ ∼ Gam(a, b). Combining
Proposition 4.3.6 and Example 4.3.5, we have that

E [BN,K (Φ)] ≤ N
a

b

(
ξ

ξ + 1

)K
.

3.4 Normalized truncation analysis
In this section, we provide truncation error bounds for normalized CRMs (NCRMs). Examples in-
clude the Dirichlet process [Ferguson, 1973], the normalized gamma process [Brix, 1999, James, 
2002, Lijoi and Prünster, 2003, Pitman, 2003, Lijoi et al., 2007, Lijoi and Prünster, 2010], and 
the normalized σ-stable process [Kingman, 1975, Lijoi and Prünster, 2010]. Given a CRM Θ 
on Ψ, we define t h e c o rresponding N C RM Ξ  v i a Ξ  ( S) :  =  Θ ( S)/Θ(Ψ) f o r e a ch measurable 
subset S ⊆ Ψ. Likewise, given a truncated CRM ΘK , we define its normalization ΞK via
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ΞK(S) := ΘK(S)/ΘK(Ψ). Note that any simulation algorithm for ΘK can be used for ΞK by
simply normalizing the result. This does not depend on the particular representation of the CRM,
and thus applies equally to all the representations in Section 4.2.

The first step in the analysis of NCRM truncations is to define their approximation error in
a manner similar to that of CRM truncations. Since Ξ and ΞK are both normalized, they are
distributions on Ψ; thus, observations X1:N are generated i.i.d. from Ξ, and Z1:N are generated
i.i.d. from ΞK . Y1:N and W1:N have the same definition as for CRMs. As in the developments
of Section 4.3, the theoretical results of this section rely on a general upper bound, provided by
Lemma 4.4.1. Proposition 4.4.2 shows that the bound in Lemma 4.4.1 is tight without further
assumptions on the data likelihood f .

Lemma 4.4.1 (NCRM protobound). Let Θ ∼ CRM(ν), and let its truncation be ΘK . Let their
normalizations be Ξ and ΞK respectively. If

Xn |Ξ
i.i.d.∼ Ξ, Zn |ΞK

i.i.d.∼ ΞK ,

Yn |Xn
indep∼ f(· |Xn), Wn |Zn

indep∼ f(· |Zn),

then
1

2
‖pN,∞ − pN,K‖1 ≤ 1− P (X1:N ⊆ supp(ΞK)) ,

where pN,∞, pN,K are the marginal densities of Y1:N and W1:N , respectively.

Proposition 4.4.2 (Protobound tightness). If G is non-atomic and Ψ is Borel, then for any δ > 0,
there exists a likelihood f such that Lemma 4.4.1 is tight up to a factor of 1− δ.

The analysis of CRMs in Section 4.3 relied heavily on the Poisson process stucture of the rates
in Θ and X1:N ; unfortunately, the rates in Ξ do not possess the same structure and thus lack many
useful independence properties (the rates must sum to one). Likewise, sampling Xn for each n
does not depend on the atoms of Ξ independently (Xn randomly selects a single atom based on
their rates). Rather than using the basic definitions of the above random quantities to derive an
error bound, we decouple the atoms of Ξ and X1:N using a technique from extreme value theory.
A Gumbel random variable T with location µ ∈ R and scale σ > 0, denoted T ∼ Gumbel(µ, σ),
is defined by the cumulative distribution function and corresponding density

P(T ≤ t) = e−e
− t−µσ and

1

σ
e−( t−µσ )−e

−( t−µσ )
.

An interesting property of the Gumbel distribution is that if one perturbs the log-probabilities of a
finite discrete distribution by i.i.d. Gumbel(0, 1) random variables, the arg max of the resulting set
is a sample from the discrete distribution [Gumbel, 1954, Maddison et al., 2014]. This technique
is invariant to normalization, as the arg max is invariant to the corresponding constant shift in the
log-transformed space. For present purposes, we develop the infinite extension of this result:

Lemma 4.4.3 (Infinite Gumbel-max sampling). Let (pi)
∞
i=1 be a collection of positive numbers

such that
∑

i pi <∞ and let p̄j :=
pj∑
i pi

. If (Ti)
∞
i=1 are i.i.d. Gumbel(0, 1) random variables, then

arg maxi∈N Ti + log pi exists, is unique a.s., and has distribution

arg max
i∈N

Ti + log pi ∼ Categorical
(

(p̄j)
∞
j=1

)
.
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The proof of this result, along with the others in this section, may be found in Appendix A.4.
The utility of Lemma 4.4.3 is that it allows the construction of Ξ and X1:N without the problem-
atic coupling of the underlying CRM atoms due to normalization; rather than dealing directly with
Ξ, we log-transform the rates of Θ, perturb them by i.i.d. Gumbel(0, 1) random variables, and
characterize the distribution of the maximum rate in this process. The combination of this distri-
bution with Lemma 4.4.3 yields the key proof technique used to develop the truncation bounds
in Theorems 4.4.4 and 4.4.5. The results presented in this section are summarized in Table 1 in
Chapter 5.

3.4.1 Series representations
The following result provides a general truncation error bound for normalized series representa-
tions, specifies its range, and guarantees that it decays to 0 as K  →  ∞ . We again use the general
series representation notation from Eq. (6), where g is a distribution on R+, and τ : R+×R+ → R+ 
is a measurable function such that limu→∞ τ(v, u) = 0 for g-almost every v.

Theorem 4.4.4 (Normalized series representation truncation error bound). The error of approxi-
mating a series representation of Ξ ∼ NCRM(ν) with its truncation ΞK satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1− (1−BK)N ≤ 1,

where

BK := E
[ ∫ ∞

0

J (ΓK , t)

(∫ 1

0

J (ΓKu, t) du

)K−1(
− d

dt
e
∫∞
0 (J(u+ΓK ,t)−1)du

)
dt

]
, (20)

J(u, t) = E
[
e−t·τ(V,u)

]
, V ∼ g, and ΓK ∼ Gam(K, 1).

Furthermore, limK→∞BK = 0.

Example 4.4.1 (Dirichlet process, DP(γ), B-Rep). The Dirichlet process with concentration γ >
0 is a normalized gamma process NΓP(γ, 1, 0). From Example 4.2.2 we have cν = γ and gν =
Exp(1), and from Section 4.3.1 we have τ(v, u) = ve−u/cν . Therefore J and its antiderivative are

J(u, t) = E
[
e−tV e

−u/γ
]

=
(
1 + te−u/γ

)−1
and

∫
J(u, t)du = γ log

(
eu/γ + t

)
.

Using the antiderivative to evaluate the integrals in the formula for BK , writing the expectation
over ΓK ∼ Gam(K, 1) explicitly, and making a change of variables we have

BK =
γK+1

Γ(K)

∫ ∞
0

∫ ∞
1

(
log

(
s+ t

1 + t

))K−1

(s+ t)−(γ+2) ds dt =

(
γ

1 + γ

)K
,

where the last equality is found by multiplying and dividing the integrand by (1 + t)−(γ+2), and
making the change of variables from s to x = log s+t

1+t
. Therefore, the truncation error can be

bounded by

1

2
‖pN,∞ − pN,K‖1 ≤ 1−

(
1−

(
γ

γ + 1

)K)N

∼ N

(
γ

γ + 1

)K
K →∞.
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The bound in Example 4.4.2 has exponential decay, and reproduces earlier DP truncation error
bound rates due to Ishwaran and James [2001] and Ishwaran and Zarepour [2002]. However, the
techniques used in past work do not generalize beyond the Dirichlet process, while those developed
here apply to any NCRM.

4.4.2 Superposition representations
The following result provides a general truncation error bound for normalized superposition rep-
resentations, specifies its range, and guarantees that it decays to 0 as K →∞. We once again rely
on the property that the truncation ΘK and tail Θ+

K are mutually independent CRMs, as expressed
in Eq. (16), with the tail measure denoted ν+

K .

Theorem 4.4.5 (Truncation error bound for normalized superposition representations). The error
of approximating a superposition representation of Ξ ∼ NCRM(ν) with its truncation ΞK satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1− (1−BK)N ≤ 1,

where

BK :=

∫ ∞
0

(∫
θe−θtν+

K(dθ)

)
e
∫
(e−θt−1)ν(dθ) dt. (21)

Furthermore, limK→∞BK = 0.

This bound can be applied by using the tail measures derived earlier in Section 4.3.2.

Example 4.4.2 (Dirichlet process, DP(γ), DB-Rep). As in Example 4.4.1, we view the Dirich-
let process with concentration γ > 0 as a normalized gamma process NΓP(γ, 1, 0). First, by
Lemma A.1.8, the integral in the exponential is

exp

(∫
(e−tθ − 1)ν(dθ)

)
= exp

(
γ

∫ ∞
0

(e−tθ − 1)θ−1e−θdθ

)
= (t+ 1)−γ.

Example 4.2.2 shows cν = γ and gν(v) = e−v, and Eq. (27) provides the tail measure ν+
K for the

decoupled Bondesson representation,

ν+
K(dθ) =

γ

ξ

∞∑
k=K+1

ξk

Γ(k)

(∫ 1

0

(− log x)k−1xξ−2e−θx
−1

dx

)
dθ.

Substituting this result, using Fubini’s theorem to swap the order of integration and summation,
evaluating the integral over θ, and making the substitution x = e−s yields

BK =
γ

ξ

∞∑
k=K+1

ξk

Γ(k)

∫∫
s,t≥0

sk−1e−(ξ−1)s(t+ 1)−γ

(es + t)2
ds dt.

Noting that ∀s ≥ 0, es ≥ 1, we have for any a ∈ (0, 1] ∩ (0, γ),

BK ≤
γ

ξ

∞∑
k=K+1

ξk

Γ(k)

∫ ∞
0

sk−1e−(ξ+a)sds

∫ ∞
0

(t+ 1)−(γ+1−a)dt

=
γ

(γ − a)ξ

∞∑
k=K+1

(
ξ

ξ + a

)k
=

γ

a(γ − a)

(
ξ

ξ + a

)K
.
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Therefore, for any a ∈ (0, 1] ∩ (0, γ),

1

2
‖pN,∞ − pN,K‖1 ≤ 1−

(
1− γ

a(γ − a)

(
ξ

ξ + a

)K)N

∼ Nγ

a(γ − a)

(
ξ

ξ + a

)K
K →∞.

To find the tightest bound, one can minimize with respect to a given γ, ξ,K.

Example 4.4.3 (Normalized gamma process, NΓP(γ, λ, d), SB-Rep). By Lemma A.1.8, the inte-
gral in the exponential is

exp

(∫
(e−θt − 1)ν(dθ)

)
=

{
exp

(
−γλ1−dd−1((t+ λ)d − λd)

)
d > 0(

λ
t+λ

)γλ
d = 0,

(22)

and the standard gamma integral yields∫
θe−θtν+

K(dθ) = γ
λ1−d

Γ(1− d)

∫
θ−de−(K+t+λ)θ dθ = γλ1−d(K + t+ λ)d−1. (23)

When d > 0, multiplying the previous two displays and integrating over t ≥ 0 yields

BK = γλ1−deγλ/d
∫ ∞
λ

(K + t)d−1e−γλ
1−dtd/d dt ≤ Cγ,λ,d (K + λ)d−1 ,

where we have used (K + t)d−1 ≤ (K + λ)d−1 for t ≥ λ and the change of variables u =
γλ1−dd−1td to find that Cγ,λ,d = eσσ1−d−1

λ1−dΓ (d−1, σ), where σ = γλd−1 and Γ(a, x) :=∫∞
x
θa−1e−θdθ is the upper incomplete gamma function. Therefore,

1

2
‖pN,∞ − pN,K‖1 ≤ 1−

(
1− Cγ,λ,d(K + λ)d−1

)N ∼ NCγ,λ,dK
d−1 K →∞.

When d = 0, multiplying Eqs. (22) and (23) and integrating over t ≥ 0 yields

BK

γλ1+γλ
=

∫ ∞
λ

(K + t)−1t−γλdt ≤

 (K + λ)−1

(
1
γλ

(K+λ)1−γλ−λ1−γλ

1−γλ

)
γλ 6= 1

K−1 log
(
K+λ
λ

)
γλ = 1,

where we obtain the bound for γλ 6= 1 by splitting the integral into the intervals [λ,K + λ] and
[K + λ,∞) and bounding each section separately, and we obtain the bound for γλ = 1 via the
transformation u = t/(K + t). Therefore, asymptotically

1

2
‖pN,∞ − pN,K‖1 . N

{
Cγ,λK

−min(1,γλ) γλ 6= 1
λK−1 logK γλ = 1

K →∞,

where Cγ,λ := max
(

λγλ

1−γλ ,
γλ2

γλ−1

)
.

Truncation of the NΓP(γ, λ, d) has been studied previously: Argiento et al. [2016] threshold 
the weights of the unnormalized CRM to be beyond a fixed level ε > 0 prior to normalization, and 
develop error bounds for that method of truncation. These results are not directly comparable to 
those of the present work due to the different methods of truncation (i.e. sequential representation 
termination versus weight thresholding).
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3.4.3 Hyperpriors
As in the CRM case, we can place priors on the hyperparameters of the NCRM rate measure 
(i.e. γ, α, λ, d, etc.). We conclude our investigation of NCRM truncation error by showing how 
bounds developed in this section can be modified to account for h yperpriors. Note that we make 
the dependence of BK on the hyperparameters Φ explicit in the notation of Proposition 4.4.6.

Proposition 4.4.6 (NCRM truncation error with a hyperprior). Given hyperparameters Φ, consider 
a representation for Θ | Φ ∼ CRM(ν), let Ξ | Φ be its normalization, and let BK(Φ) be given by 
Eq. (20) (for a series representation) or Eq. (21) (for a superposition representation). The error of 
approximating Ξ with its truncation ΞK satisfies

0 ≤ 1

2
‖pN,∞ − pN,K‖1 ≤ 1− (1− E [BK(Φ)])N ≤ 1.

Example 4.4.4 (Dirichlet process, DP(γ), B-Rep). If we place a Lomax prior on γ, i.e. γ ∼
LomP(a, 1), then combining Proposition 4.4.6 and Example 4.4.1 yields

1

2
‖pN,∞ − pN,K‖1 ≤ 1−

(
1− Γ(a+ 1)Γ(K + 1)

Γ(a+K + 1)

)N
∼ NΓ(a+ 1)(K + 1)−a K →∞.

3.5 Simulation and computational complexity

The sequential representations in Section 4.2 are each generated from a different finite sequence 
of distributions, resulting in a different expected computational cost for the same truncation level. 
Thus, the truncation level itself is not an appropriate parameter with which to compare the error 
bounds for different representations and we require a characterization of the computational cost. 
We investigate the mean complexity E[R] of each representation, where R is the number of ran-
dom variables sampled, as a function of the truncation level for each of the representations in 
Section 4.2.

We begin with the series representations. For each value of k = 1, . . . , K, each series rep-
resentation generates a single trait ψk ∼ G and a rate θk composed of some transformation of 
random variables. Thus, all of the series representations in this work satisfy E[R] = rK for some 
constant r: by inspection, the inverse-Lévy representation has r = 2, and all the remaining series 
representations have r = 3.

The superposition representations, on the other hand, generate a Poisson random variable to 
determine the number of atoms at each value of k = 1, . . . , K, and∑K

then generate those atoms. 
Therefore, the mean simulation complexity takes the form E[R] = k=1 1 + rkE[Ck] for some
constants rk that might depend on the value of k. For the decoupled Bondesson representation,
rk = 3 since each atom requires generating three values (ψki, Vki, and Tki), and E[Ck] = c/ξ,
so E[R] =

(
3c
ξ

+ 1
)
K. For the size-biased representation, rk = 3 since each atom requires

generating three values (ψki, zki, and θki), and E[Ck] = ηk, so E[R] = K + 3
∑K

k=1 ηk. Note that
here E[R] ∼ K, for K →∞ since ηk is a decreasing sequence. For the power-law representation,
rk = k+2, since each atom requires generating ψki, Vki, and k beta random variables, and therefore
E[R] =

(
1 + 5γ

2

)
K + γ

2
K2.
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Figure 1: Truncation error bounds for the beta-Bernoulli process.

3.6 Additional Examples

In this section, we provide example applications of our theory to the beta process and to the beta 
prime process.

3.6.1 Beta process
The beta process BP(γ, α, d) [Teh and Görür, 2009, Broderick et al., 2012] with discount param-
eter d ∈ [0, 1), concentration parameter α > −d, and mass parameter γ > 0, is a CRM with rate 
measure

ν(dθ) = γ
Γ(α + 1)

Γ(1− d)Γ(α + d)
1 [θ ≤ 1] θ−1−d(1− θ)α+d−1dθ. (24)

Setting d = 0 yields the standard beta process [Hjort, 1990, Thibaux and Jordan, 2007]. The beta
process is often paired with a Bernoulli likelihood or negative binomial likelihood with s ∈ N
failures:

Bern: h(x | θ) = 1 [x ≤ 1] θx(1− θ)1−x,

NegBinom: h(x | θ) =

(
x+ s− 1

x

)
(1− θ)sθx.

Note that for the Bernoulli likelihood π(θ) = 1 − θ and for the negative binomial likelihood 
π(θ) = (1 − θ)s.

Bondesson representation If α > 1 and d = 0, then θν(θ) = γα(1 − θ)α−11[θ ≤ 1] is non-
increasing, cν = limθ→0 θν(θ) = γα, and gν (v) = (α − 1)(1 − v)α−2 = Beta(v; 1, α − 1). Thus, 
it follows from Theorem 4.2.1 that if Θ ← B-Rep(γα, Beta(1, α − 1)), then Θ ∼ BP(γ, α, 0). In 
the case of α = 1, gν (v) = δ1, so Vk ≡ 1 and the Bondesson representation is equivalent to the 
inverse-Lévy representation. Since exp(−Ek/c) ∼ Beta(1, c), the representation used in Teh et al.
[2007] is equivalent to the Bondesson representation for BP(γ, 1, 0).
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To obtain a truncation bound in the Bernoulli likelihood case, we can argue as in Example 4.3.2:

BN,K ≤ N

∫ ∞
0

(
1− E

[
π(ve−GK/(γα))

])
ν(dv)

= NγαE[e−GK/(γα)]

∫ 1

0

(1− v)α−1dv (25)

= Nγ

(
γα

1 + γα

)K
.

This result generalizes that in Doshi-Velez et al. [2009], which applies only when α = 1.
Theorem 4.2.1 does not apply directly when α < 1, since limθ→0 θν(θ) = ∞. However, a

representation can be obtained by using a trick from Paisley et al. [2012]. For α > 0, let

Θ′ =
C∑
k=1

θ′kδψ′k ,

where C ∼ Poiss(γ), θ′k
i.i.d.∼ Beta(1, α), and ψ′k

i.i.d.∼ G. Thus, Θ′ is a CRM with rate measure
γα(1− θ)α−11[θ ≤ 1]dθ. If Θ ∼ BP(γα/(α+ 1), α+ 1, 0), which can be generated according to
Theorem 4.2.1, then Θ′′ = Θ + Θ′ is a CRM with rate density on [0, 1] given by

γαθ−1(1− θ)α + γα(1− θ)α−1 = γαθ−1(1− θ)α−1,

hence Θ′′ ∼ BP(γ, α, 0).

Thinning representation If we let g = Beta(1− d, α + d), then the thinning representation for
BP(γ, λ, d) is

Θ =
∞∑
k=1

Vk1(VkΓk ≤ γ)δψk , with Vk
i.i.d.∼ Beta(1− d, α + d).

Rejection representation To obtain a rejection representation for any d when α ≥ 1 − d, let µ
be the rate measure for BP(γ Γ(α+1)

Γ(2−d)Γ(α+d)
, 1− d, d). We then have that

µ[x,∞) =

{
γ′d−1(x−d − 1) d > 0

−γ′ log x d = 0
and µ←(u) =

{
(1 + du/γ′)−1/d d > 0

e−u/γ
′

d = 0,

where γ′ := γ Γ(α+1)
Γ(1−d)Γ(α+d)

. Thus, we can apply the inverse-Lévy method analytically for µ. Since
we have constructed µ such that dν/dµ ≤ 1, we can use µ to construct the rejection representation

Θ =
∞∑
k=1

Vk1(Uk ≤ (1− Vk)α+d−1) ∼ BP(γ, α, d), α ≥ 1− d,

with Vk =

{
(1 + dΓk/γ

′)−1/d d > 0

e−Γk/γ
′

d = 0
, Uk

i.i.d.∼ Unif[0, 1].
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The expected number of rejections is

−d−1
[
1 + 2d 2F

(0,0,1,0)
1 (−α− d,−d,−d; 1) + d 2F

(0,1,0,0)
1 (−α− d,−d,−d; 1)

]
,

where 2F 1 is the ordinary hypergeometric function and the parenthetical superscripts indicate par-
tial derivatives. This quantity monotonically diverges to∞ as d→ 1.

To obtain a truncation bound in the Bernoulli likelihood case, we consider the d > 0 and d = 0
settings separately. If d > 0, we have

BN,K

Nγ′
≤
∫ 1

0

FK(γ′d−1(x−d − 1))x−d(1− x)α+d−1dx

≤
∫ a

0

x−d(1− x)a+d−1dx+ FK(γ′d−1(a−d − 1))

∫ 1

a

x−d(1− x)α+d−1dx

≤
∫ a

0

x−ddx+ a−dFK(γ′d−1(a−d − 1))

∫ 1

a

(1− x)α+d−1dx

≤ (1− d)−1a1−d + a−d
(
3γ′d−1(a−d − 1)/K

)K
≤ (1− d)−1a1−d +

(
3γ′d−1/K

)K
a−(K+1)d.

Setting the two terms equal and solving for a we obtain a1+d(K−1) = (3γ′(d−1 − 1)/K)
K and

conclude that

BN,K ≤ 2Nγ′
(

3γ′(d−1 − 1)

K

) K
1+d(K−1)

∼ 2Nγ′
(

3γ′(d−1 − 1)

K

)1/d

K →∞.

If d = 0, we have

BN,K

Nγ′
≤
∫ 1

0

FK(−γ′ log x)(1− x)α−1dx

≤
∫ a

0

(1− x)α−1dx+ FK(−γ′ log a)

∫ 1

a

(1− x)α−1dx

≤ a+ (−3γ′ log a/K)
K
.

Setting the two terms equal and solving for a we conclude that

BN,K ≤ 2Nγαe−KW0({3γα}−1),

where W0 is as defined in Eq. (11).

Decoupled Bondesson and power-law representations The decoupled Bondesson representa-
tion for BP(γ, α, 0) from Paisley et al. [2010] was extended by Broderick et al. [2012] to the
BP(γ, α, d) setting. The Broderick et al. [2012] construction for the BP(γ, α, d) is in fact the
“trivial” power-law representation PL-Rep(γ, α, d, δ1) (the decoupled Bondesson representation
is the special case when d = 0).

In the Bernoulli likelihood case, the truncation bound for the decoupled Bondesson represen-
tation is

BN,K ≤
Nγα

ξ

∞∑
k=K+1

E[V e−Tk ] =
Nγα

ξ

∞∑
k=K+1

1

α

(
ξ

1 + ξ

)K
= Nγ

(
ξ

1 + ξ

)K
.
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For the power law representation, by the same arguments as Example 4.3.7,

BN,K ≤ Nγ
K∏
k=1

α + kd

α + kd− d+ 1
.

This result generalizes that in Paisley et al. [2012], which applies only when d = 0.

Size-biased representation The size-biased representation of the beta process is well-
established and we refer the reader to Broderick et al. [2012, 2017] for details. We note that
the standard beta integral yields

ηk = ηk1 =

∫
π(θ)k−1(1− π(θ))ν(dθ) = γ

Γ(α + 1)

Γ(α + d)

Γ(α + d+ k − 1)

Γ(α + k)
,

and for i > 1, ηki = 0. Hence zki = 1 almost surely and θki ∼ Beta(1 − d, α + d + k − 1),
demonstrating that the construction due to Thibaux and Jordan [2007] is a special case of the
size-biased representation for BP(γ, α, d).

To obtain a truncation bound for the Bernoulli likelihood case, first consider the d > 0 setting.
Using Lemma A.1.6 to simplify the sum in Eq. (18), we have

BN,K ≤
γ

d

Γ(α + 1)

Γ(α + d)

(
Γ(α + d+K)

Γ(α +K)
− Γ(α + d+K +N)

Γ(α +K +N)

)
∼ γN

Γ(α + 1)

Γ(α + d)
Kd−1 K →∞,

where the asymptotic result follows from Lemmas A.1.4, A.1.7 and A.1.9. When d = 0, we can
again use Lemma A.1.6 to arrive at

BN,K ≤ γα (ψ(α +K)− ψ(α +N +K)) ∼ γαNK−1 K →∞,

where ψ(·) is the digamma function, and the asymptotic result follows from Lemma A.1.4.
We can also bound the truncation error in the case of the negative binomial likelihood. For a

fixed number of failures s > 0, and assuming α + d+ (k − 1)s > 1, integration by parts yields∫
π(θ)k−1(1− π(θ))ν(dθ)

=
γ

d

Γ(α + 1)

Γ(α + d)

(
Γ(α + d+ ks)

Γ(α + ks)
− Γ(α + d+ (k − 1)s)

Γ(α + (k − 1)s)

)
, (26)

When d > 0, the sum from Eq. (18) is telescoping, so canceling terms,

BN,K ≤
γ

d

Γ(α + 1)

Γ(α + d)

(
Γ(α + d+Ks)

Γ(α +Ks)
− Γ(α + d+ (K +N)s)

Γ(α + (K +N)s)

)
∼ γNsd

Γ(α + 1)

Γ(α + d)
Kd−1 K →∞,

where the asymptotic result follows from Lemmas A.1.4, A.1.7 and A.1.9. To analyze the case
where d = 0, we can use L’Hospital’s rule to take the limit of Eq. (26) as d→ 0, yielding

lim
d→0

∫
π(θ)k−1(1− π(θ))ν(dθ) = γα(ψ(α + ks)− ψ(α + (k − 1)s)).
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Again computing the error bound by canceling terms in the telescoping sum,

BN,K ≤ γα (ψ(α +Ks)− ψ(α + (K +N)s)) ∼ γαNK−1 K →∞,

where the asymptotic result follows from an application of Lemma A.1.4.

Stochastic mapping We can transform the gamma process ΓP(γ, λ, 0) into the beta process
BP(γ, α, 0) by applying the stochastic mapping

θ 7→ θ/(θ +G), G ∼ Gam(α, α), κ(θ, du) = Gam(θ/(θ + u);α, α)
θ

u2
du.

Using Lemma 4.2.4 yields κ(Θ) ∼ BP(γ, α, 0). Applying this result to the Bondesson representa-
tion for ΓP(γ, α, 0) yields

∞∑
k=1

θkδψk ∼ BP(γ, α, 0), with θk := (1 +GkV
−1
k eΓk,αγ )−1, ψk

i.i.d.∼ G,

Gk
i.i.d.∼ Gam(α, α), Vk

i.i.d.∼ Exp(α).

which, unlike the Bondesson representation, applies for all α > 0.

Hyperpriors Consider truncating the Bondesson representation of the beta process, but with a
hyperprior on the mass parameter γ. A standard choice of hyperprior for γ is a gamma distribution,
i.e. γ ∼ Gam(a, b). Combining Proposition 4.3.6 and the beta-Bernoulli truncation bound in
Eq. (25), we have that

BN,K ≤ N
a

b

(
ξ

ξ + 1

)K
.

3.6.2 Beta prime process
The beta prime process BPP(γ, α, d) [Broderick et al., 2017] with discount parameter d ∈ [0, 1), 
concentration parameter α > −d, and mass parameter γ > 0, is a CRM with rate measure

ν(dθ) = γ
Γ(α + 1)

Γ(1− d)Γ(α + d)
θ−1−d(1 + θ)−αdθ.

The beta prime process is often paired with an odds Bernoulli likelihood,

h(x | θ) = 1 [x ≤ 1] θx(1 + θ)−1,

in which case π(θ) = (1 + θ)−1. All truncation results are for the odds Bernoulli likelihood.

Bondesson representation If d = 0, then θν(θ) = γα(1 + θ)−α is non-increasing and 
cν = limθ→0 θν(θ) = γα, so gν (v) = α(1 + v)−α−1 = Beta′(v; 1, α). Thus, it follows from 
Theorem 4.2.1 that if Θ ← B-Rep(γα, Beta′(1, α)), then Θ ∼ BPP(γ, α, 0). For the truncation
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Figure 2: Truncation error bounds for the beta prime-odds Bernoulli process.

bound we have

BN,K = N

∫ ∞
0

(
1− E

[
π(ve−GK/(γα))

])
ν(dv)

= NγαE
[
e−GK/(γα)

∫ ∞
0

(1 + v)−α(1 + ve−GK/(γα))−1dv

]
≤ NγαE[e−GK/(γα)]

∫ ∞
0

(1 + v)−α(1 + vE[e−GK/(γα)])−1dv

≤ Nγα

(
γα

1 + γα

)K ∫ ∞
0

(1 + v)−α−1dv

= Nγ

(
γα

1 + γα

)K
,

where the first upper bound follows from Jensen’s inequality. Thus, the error bound is the same as
for the beta-Bernoulli process.

Thinning representation If we let g = Beta′(1− d, α+ d), then the thinning representation for
BPP(γ, α, d) is

Θ =
∞∑
k=1

Vk1(Vk(Γk − γ) ≤ γ)δψk , with Vk
i.i.d.∼ Beta′(1− d, α + d).

Rejection representation For d = 0 and α ≥ 1, we take µ to be the rate measure for
LomP(γ, 1), so the rejection representation is

Θ =
∞∑
k=1

Vk1(Uk ≤ (1 + Vk)
α−1) ∼ BPP(γ, α, 0), α ≥ 1,

with Vk = (eγ
−1α−1Γk − 1)−1, Uk

i.i.d.∼ Unif[0, 1].

The expected number of rejections is cγ +ψ (α), where cγ is the Euler-Mascheroni constant andψ
is the digamma function. Sinceψ (α) ∼ log(α) for α → ∞, the representation remains efficient 
even for fairly large values of α. To obtain a truncation bound, we use the same approach as in
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Example 4.3.3:

BN,K

Nγα
=

∫ ∞
0

FK(γα log(1 + x−1))(1 + x)−α−1dx

≤
∫ a

0

(1 + x)−α−1dx+ FK(γα log(1 + a−1))

∫ ∞
a

(1 + x)−α−1dx

≤ a+ α−1(3γα log(1 + a−1)/K)K(1 + a)−α

∼ e−b + α−1(3γα/K)KbK ,

where b := log(1 + a−1). Setting the two terms equal and solving for b, we conclude that

BN,K ≤ 2Nγαe−KW0({3γα}−1),

where W0 is the product log function, as defined in Eq. (11).
Similarly to Example 4.2.5, for the case of d > 0 and α ≥ 0, we instead use µ(dθ) =

γ Γ(α+1)
Γ(1−d)Γ(α+d)

θ−1−ddθ. Since µ←(u) = (γ′u−1)1/d, where γ′ := γ Γ(α+1)
dΓ(1−d)Γ(α+d)

, the rejection rep-
resentation is

Θ =
∞∑
k=1

Vk1(Uk ≤ (1 + Vk)
−α)δψk , with Vk = (γ′Γ−1

k )1/d,

Uk
i.i.d.∼ Unif[0, 1].

The expected number of rejections is γα
d

, so the representation is efficient for large d, but extremely
inefficient when d is small. We have

BN,K = Nγ
Γ(α + 1)

Γ(1− d)Γ(α + d)

∫ ∞
0

FK(γ′x−d)x−d(1 + x)−1−αdx.

Following the approach of Example 4.3.4, the integral can be upper bounded as∫ a

0

x−ddx+ FK(γ′a−d)

∫ ∞
a

x−d(1 + x)−1−αdx

≤ (1− d)−1a1−d + α−1a−d(3γ′K−1a−d)K .

Setting the two terms equal and solving for a, we obtain

BN,K ≤ 2N

(
γΓ(α + 1)

Γ(1− d)Γ(α + d)

) (d+1)K+1
dK+1

(α(1− d)dK)−
1

dK+1

(
dK

3

)− K
dK+1

∼ 2N

(
γΓ(α + 1)

Γ(2− d)Γ(α + d)

)1+1/d(
dK

3(1− d)d

)−1/d

K →∞.

Decoupled Bondesson representation It follows from Theorem 4.2.3 and the same arguments
as those in the Bondesson case that if Θ ← DB-Rep(γα,Beta′(1, α), ξ), then Θ ∼ BPP(γ, α, 0).
Using the trivial bound θ/(1 + θ) ≤ θ and calculations analogous to those in the beta-Bernoulli
case, for α > 1 we obtain the upper bound

BN,K ≤ 1− exp

{
−N γα

α− 1

(
ξ

1 + ξ

)K}
∼ N

γα

α− 1

(
ξ

1 + ξ

)K
K →∞.
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Power-law representation We can transform the gamma process ΓP(γ, 1, d) into the beta prime
process BPP(γ, α, d) by applying the stochastic mapping

θ 7→ u = θ/G, G ∼ Gam(α + d, 1), κ(θ, du) = Gam(θ/u;α + d, 1)
θ

u2
du.

Using Lemma 4.2.4 yields κ(Θ) ∼ BPP(γ, α, d). Applying this result to the power-law represen-
tation ΓP(γ, 1, d) from Example 4.2.8 yields the novel power-law representation

Θ← PL-Rep(γα, 1, d,Beta′(1, α + d)) implies Θ ∼ BPP(γ, α, d).

Using the trivial bound θ/(1 + θ) ≤ θ and calculations analogous to those in the beta-Bernouli
case, for α > 1 we obtain the upper bound and asymptotic simplification

BN,K ≤ N
γα

α− 1

K∏
k=1

1 + kd

2 + kd− d

∼ γNα

α− 1

{
2−K d = 0

Γ( 2
d)

Γ( 1+d
d )

K1−d−1
0 < d < 1

K →∞.

Size-biased representation We have

ηk1 = ηk =

∫
π(θ)k−1(1− π(θ))ν(dθ) = γ

Γ(α + 1)Γ(d+ k + α− 1)

Γ(α + d)Γ(k + α)
,

which is the same as for the beta-Bernoulli process. Thus, the error bound is also the same as the
beta-Bernoulli case.
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Results and Discussion

Table 1 summarizes our truncation and simulation cost results as applied to the beta, (normalized) 
gamma, and beta prime processes. Results for the Bondesson representation of BP(γ, 1, 0) as 
well as the decoupled Bondesson representations of BP(γ, λ, 0) and ΓP(γ, λ, 0) were previously 
known, and are reproduced by our results. All other results in the table are novel to the best of 
the authors’ knowledge. It is interesting to note that the bounds and expected costs within each of 
the representation classes often have the same form, aside from some constants. Across classes, 
however, they vary significantly, indicating that the chosen sequential representation of a process 
has more of an influence on the truncation error than the process itself.

Fig. 3 shows a comparison of how the truncation error bounds vary with the expected com-
putational cost E[R] of simulation for the (normalized) gamma process and Poisson likelihood 
with N = 5 observations. Results shown for the thinning, rejection, and inverse-Lévy represen-
tations are computed by Monte-Carlo approximation of the formula for BN,K in Eq. (8), while 
all others use closed-form expressions from the examples in Sections 4.3 and 4.4. Note that the 
Bondesson and decoupled Bondesson representations do not exist when d > 0. Further, only those 
representations for which we provide closed-form bounds in the examples are shown for the nor-
malized gamma process; we leave the numerical approximation of the results from Theorems 4.4.4 
and 4.4.5 as an open problem. Similar figures for other processes (in particular, the beta-Bernoulli 
and beta prime-odds Bernoulli) are provided in Section 4.6. Note that all bounds presented are 
improved by a factor of two versus comparable past results in the literature, due to the reliance on 
Lemmas 4.3.1 and 4.4.1 rather than the earlier bound found in Ishwaran and James [2001].

In Fig. 3, the top row shows results for the light-tailed process (γ = 1, λ = 1, d = 0, and 
ξ = c = γλ). All representations except for thinning and size-biased capture its exponential 
truncation error decay. This is due to the fact that the thinning representation generates increasingly 
many atoms of weight 0 as K → ∞, and the expected number of atoms at each outer index 
for the size-biased representation decays as K → ∞. The inverse-Lévy representation has the 
lowest truncation error as expected, as it is the only representation that generates a nonincreasing 
sequence of weights (and so must be the most efficient [Arbel and Prünster, 2017]). Based on this 
figure and those in Section 4.6 for other processes, i t appears that the Bondesson representation 
typically provides the best tradeoff between simplicity and efficiency, and should be used whenever 
its conditions in Theorem 4.2.1 are satisfied. W hen t he t echnical c onditions a re n ot satisfied, 
the rejection representation is a good alternative. If ease of theoretical analysis is a concern, the 
decoupled Bondesson representation provides comparable efficiency with the analytical simplicity 
of a superposition representation.

The bottom two rows of Fig. 3 show results for the heavy-tailed process (γ = 1, λ = 2, 
and d ∈ {0.1, 0.5}). The representation options are more limited, as the technical conditions
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Figure 3: Truncation error bounds for representations of the (normalized) gamma-Poisson process,
with γ = 1, λ = 2, and ξ = γλ. The left column is for the unnormalized process, while the
right column is for the normalized process. Each row displays results for a different value of the
discount parameter d ∈ {0, 0.1, 0.5}.
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Table 1: Asymptotic error bounds and simulation cost summary. Error bounds are presented up to
a constant that varies between models. Be = Bernoulli, OBe = odds Bernoulli, Poi = Poisson.

Rep. Random Measure h Asymptotic Error Bound Complexity

IL LomP(γ, λ−1) Poi Ne−KW0({3γλmax(λ,e)}−1) 2K

B

BP(γ, λ ≥ 1, 0) Be
Nγ
(

γλ
γλ+1

)K
3K

ΓP(γ, λ, 0) Poi
BPP(γ, λ, 0) OBe

DP(γ) — N
(

γ
γ+1

)K
T — — See Eq. (12) 3K

R

BP(γ, λ, 0) Be

N

 e−KW0({3γλ}−1) d = 0
K−d(1−d) d > 0 (ΓP)
K−1/d d > 0 (BP,BPP)

3K
ΓP(γ, λ, 0) Poi
BPP(γ, λ, 0) OBe

DB

BP(γ, λ ≥ 1, 0) Be
N
(

ξ
ξ+1

)K
ΓP(γ, λ, 0) Poi (

3c
ξ + 1

)
K

BPP(γ, λ > 1, 0) OBe

DP(γ) — Nγ
a(γ−a)

(
ξ
ξ+a

)K
, a ∈ (0, 1] ∩ (0, γ)

SB

BP(γ, λ, d) Be
NKd−1

K
ΓP(γ, λ, d) Poi
BPP(γ, λ, d) OBe

NΓP(γ, λ, d) — N


K−1 logK d = 0, γλ = 1
K−min(1,γλ) d = 0, γλ 6= 1
Kd−1 d > 0

PL
BP(γ, λ, d) Be

N


(

λ
λ+1

)K
d = 0 (BP,ΓP)

2−K d = 0 (BPP)
K1−1/d d > 0

γ
2K

2ΓP(γ, λ, d) Poi
BPP(γ, λ > 1, d) OBe

of the Bondesson and decoupled Bondesson representations are not satisfied. Here the rejection 
representation is often the best choice due to its simplicity and competitive performance with the 
inverse-Lévy representation. However, one must take care to check its efficiency beforehand using 
Proposition 4.2.2 given a particular choice of µ(dθ). For example, the choice of µ(dθ) ∝ θ−1−ddθ 
in the present work makes the rejection representation very inefficient when d  �  1  for both the 
gamma-Poisson (Fig. 3) and beta prime-odds Bernoulli (Fig. 2) processes, but efficient for the beta-
Bernoulli process (Fig. 1). If no µ(dθ) yields reasonable results, the power-law representation is a 
good choice for d � 1 as its truncation bound approaches the exponential decay of the light-tailed 
process. For larger d > 0 the size-biased representation is a good alternative.

Based on the results in Fig. 3, it appears that there is no single dominant representation for all 
situations (provided the inverse-Lévy representation is intractable, as it most often is). However, 
as a guideline, the rejection and Bondesson representations tend to be good choices for light-tailed 
processes, while the rejection, size-biased, and power-law representations are good choices for 
heavy-tailed processes.
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Conclusions

We have investigated sequential representations, truncation error bounds, and simulation algo-
rithms for (normalized) completely random measures. In past work, the development and analysis 
of these tools has occurred only on an ad hoc basis. The results in the present paper, in con-
trast, provide a comprehensive characterization and analysis of the different types of sequential 
(N)CRM representations available to the practitioner. However, there are a number of remaining
open questions and limitations.

First, this work does not consider the influence o f o bserved d ata: a ll a nalyses a ssume a n a 
priori perspective, as truncation is typically performed before data are incorporated via posterior 
inference (e.g. in variational inference for the DP mixture [Blei and Jordan, 2006] and BP latent 
feature model [Doshi-Velez et al., 2009]). However, analysis of a posteriori truncation has been 
studied in past work as well [Ishwaran and James, 2001, Gelfand and Kottas, 2002, Ishwaran and 
Zarepour, 2002]. In the language of CRMs, observations introduce a fixed-location component in 
the posterior process, while the unobserved traits are drawn from the (possibly normalized) ordi-
nary component of a CRM [Ishwaran and Zarepour, 2002, Broderick et al., 2017]. We anticipate 
that this property makes observations reasonably simple to include: the truncation tools provided 
in the present paper can be used directly on the unobserved ordinary component, while the fixed-
location component may be treated exactly.

In addition, there are important open questions regarding the sequential representations devel-
oped in this work. It is unknown whether generalized versions of the Bondesson and decoupled 
Bondesson representations can be developed for larger classes of rate measures. The power-law 
representation does provide a partial answer in the decoupled Bondesson case. Regarding size-
biased representations, one might expect that the use of conjugate exponential family CRMs [Brod-
erick et al., 2017] would yield a closed-form expression for the truncation bound. In all of the cases 
provided in this paper, this was indeed the case; the integrals were evaluated exactly and a closed-
form expression was found. However, we were unable to identify a general expression applicable 
to all conjugate exponential family CRMs. Based on the examples provided, we conjecture that 
such an expression exists. Finally, fundamental connections between some of the representations 
were left largely unexplored in this work. This is an open area of research, although progress has 
been made by connecting decoupled Bondesson and size-biased representations for (hierarchies 
of) generalized beta processes [Roy, 2014, Sec. 6.4].

A final remark is that one of the primary uses of sequential representations in past work has 
been in the development of posterior inference procedures [Paisley et al., 2010, Blei and Jordan, 
2006, Doshi-Velez et al., 2009]. The present work provides no guidance on which truncated rep-
resentations are best paired with which inference methods. We leave this as an open direction for 
future research, which will require both theoretical and empirical investigation.
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Technical Appendices

A.1 Technical lemmas
Lemma A.1.1. If Yk is a uniformly bounded, non-negative sequence of random variables such that
limk→∞ E[Yk] = 0, then Yk

P→ 0.

Proof. Without loss of generality we assume that Yk ∈ [0, 1] a.s. Then for all ε, δ > 0, by hypoth-
esis there exists k′ such that for all k ≥ k′, E[Yk] ≤ εδ. It then follows from Markov’s inequality
that for all k ≥ k′, P(Yk > ε) ≤ δ.

Lemma A.1.2. If µ is a non-atomic measure on Rd, then for any x ∈ Rd and δ > 0, there exists
εx,δ > 0 such that µ({y ∈ Rd | ‖x− y‖2 ≤ εx,δ}) ≤ δ.

Proof. Without loss of generality let x = 0. Suppose the implication does not hold. Then there
exists δ > 0 such that for all ε > 0, µ(Bε) > δ, where Bε := {y ∈ Rd | ‖y‖2 ≤ ε}. Let εn be a
sequence such that εn → 0 as n → ∞. Then by continuity µ({0}) = limn→∞ µ(Bεn) > δ, hence
µ is a atomic, which is a contradiction.

Lemma A.1.3. If ν(dθ), an absolutely continuous σ-finite measure on R+, and continuous φ :
R+ → [0, 1] satisfy

ν(R+) =∞,
∫

min(1, θ)ν(dθ) <∞, and
∫
φ(θ)ν(dθ) <∞,

then

lim
θ→0

φ(θ) = φ(0) = 0.

Proof.
∫

min(1, θ)ν(dθ) <∞ implies that
∫ 1

0
θν(dθ) <∞ and

∫∞
1
ν(dθ) <∞. But ν(R+) =∞,

so
∫ 1

0
ν(dθ) = ∞. In fact, for all ε > 0, ν([0, ε]) = ∞ since otherwise

∫ 1

ε
ν(dθ) = ∞ =⇒∫ 1

ε
θν(dθ) = ∞, a contradiction. Since φ is continuous and has bounded range, limθ→0 φ(θ) = c

exists and is finite. Assume c > 0, so ∃ε > 0 such that ∀ε′ < ε, |φ(ε′)− c| < c/2, and in particular
φ(ε′) > c/2. Thus, for any θ′ < ε,

∫ θ′
0
φ(θ)ν(dθ) ≥ c/2

∫ θ′
0
ν(dθ) = ∞, a contradiction. Thus,

c = 0.

Lemma A.1.4. Assume φ(x) is a twice continuously differentiable function with the following 
properties:
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1. φ′′(x)/φ′(x)→ 0 as x→∞

2. for all δ > 0 there exists Bδ > 0 such that for any increasing sequence (xn)∞n=1,

lim sup
n→∞

sup
y∈[xn,xn+δ]

φ′′(y)

φ′′(xn)
= Bδ <∞.

Then for any constant c > 0 and any increasing sequence (xn)∞n=1,

φ(xn + c)− φ(xn) ∼ cφ′(xn) for n→∞.

Proof. A second-order Taylor expansion of φ(xn + c) about xn yields

φ(xn + c)− φ(xn) = cφ′(xn) +
c2

2
φ′′(x∗n),

where x∗n ∈ [xn, xn + c]. Our assumptions on φ ensure that,

lim
n→∞

φ′′(x∗n)

φ′(xn)
≤ lim

n→∞

Bcφ
′′(xn)

φ′(xn)
= 0

and hence

lim
n→∞

φ(xn + c)− φ(xn)

cφ′(xn)
= lim

n→∞
1 +

c

2

φ′′(x∗n)

φ′(xn)
= 1.

Lemma A.1.5 (Gautschi [1959]).

(1 + x)d−1 ≤ Γ(x+ d)

Γ(x+ 1)
≤ xd−1 0 ≤ d ≤ 1, x ≥ 1,

and thus for 0 ≤ d ≤ 1,

Γ(x+ d)

Γ(x+ 1)
∼ xd−1 x→∞.

Lemma A.1.6. For α > 0 and x ≥ −1,
M∑
m=1

Γ(α +m+ x)

Γ(α +m)
=

{
1

1+x

(
Γ(α+M+x+1)

Γ(α+M)
− Γ(α+x+1)

Γ(α)

)
x > −1

ψ(α +M)− ψ(α) x = −1

where ψ(·) is the digamma function.

Proof. When M = 1 and x > −1, analyzing the right hand side yields

Γ(α +M + x+ 1)

Γ(α +M)
− Γ(α + x+ 1)

Γ(α)
=

Γ(α + x+ 2)

Γ(α + 1)
− Γ(α + x+ 1)

Γ(α)

=
Γ(α + x+ 1)

Γ(α)

(
α + x+ 1

α
− 1

)
= (x+ 1)

Γ(α + x+ 1)

Γ(α + 1)
.
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By induction, supposing that the result is true for M − 1 ≥ 1 and x > −1,
M∑
m=1

Γ(α +m+ x)

Γ(α +m)
=

M−1∑
m=1

Γ(α +m+ x)

Γ(α +m)
+

Γ(α +M + x)

Γ(α +M)

=
1

1 + x

(
Γ(α +M + x)

Γ(α +M − 1)
− Γ(α + x+ 1)

Γ(α)

)
+

Γ(α +M + x)

Γ(α +M)

=
Γ(α +M + x)

Γ(α +M − 1)

α +M + x

(1 + x)(α +M − 1)
− Γ(α + x+ 1)

(1 + x)Γ(α)

=
1

1 + x

(
Γ(α +M + x+ 1)

Γ(α +M)
− Γ(α + x+ 1)

Γ(α)

)
.

This demonstrates the desired result for x > −1. Next, when x = −1, we have that
M∑
m=1

Γ(α +m− 1)

Γ(α +m)
=

M∑
m=1

1

α +m− 1
.

We proceed by induction once again. For M = 1, using the recurrence relation ψ(x + 1) =
ψ(x) + x−1 [Abramowitz and Stegun, 1964, Chapter 6], the right hand side evaluates to

ψ(α + 1)− ψ(α) = ψ(α) + α−1 − ψ(α) = α−1.

Supposing that the result is true for M − 1 ≥ 1 and x = −1,
M∑
m=1

1

α +m− 1
=

M−1∑
m=1

1

α +m− 1
+

1

α +M − 1

= ψ(α +M − 1)− ψ(α) +
1

α +M − 1

= ψ(α +M)− ψ(α),

demonstrating the result for x = −1.

Lemma A.1.7. For a > 0, d ∈ R, and xn →∞,

d

dxn

Γ(a+ xn + d)

Γ(a+ xn)
∼ dxd−1

n .

Proof. We have

d

dx

Γ(a+ x+ d)

Γ(a+ x)
=

Γ(a+ x+ d)

Γ(a+ x)
(ψ(a+ x+ d)− ψ(a+ x)),

where ψ is the digamma function. Using Lemma A.1.4 and the asymptotic expansion of
ψ′ [Abramowitz and Stegun, 1964, Chapter 6], we obtain

ψ(a+ xn + d)− ψ(a+ xn) ∼ dψ′(a+ xn) ∼ d

xn + a
∼ dx−1

n .

Since
Γ(a+ xn + d)

Γ(a+ xn)
∼ (a+ xn)d ∼ xdn,

using Lemma A.1.9(2) with the previous two displays yields the result.
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Lemma A.1.8. For 0 ≤ d < 1,∫ ∞
0

(
e−tθ − 1

)
θ−1−de−λθdθ =

{
Γ(−d)

(
(λ+ t)d − λd

)
0 < d < 1

log
(

λ
t+λ

)
d = 0

.

Proof. By integration by parts and the standard gamma integral,∫ ∞
0

(
e−tθ − 1

)
θ−1−de−λθdθ =

∫ ∞
0

[
(λ+ t)e−(λ+t)θ − λe−λθ

] θ−d
−d

dθ

= Γ(−d)
(
(λ+ t)d − λd

)
.

Taking the limit as d→ 0 via L’Hospital’s rule yields

lim
d→0

Γ(−d)
(
(λ+ t)d − λd

)
= log

(
λ

λ+ t

)
.

Lemma A.1.9 (Standard asymptotic equivalence properties).

1. If an ∼ bn and bn ∼ cn, then an ∼ cn.

2. If an ∼ bn and cn ∼ dn, then ancn ∼ bndn.

3. If an ∼ bn, cn ∼ dn and ancn > 0, then an + cn ∼ bn + dn.

A.2 Proofs of sequential representation results

A.2.1 Correctness of B-Rep, DB-Rep, and PL-Rep

Proof of Theorem 4.2.1. First, we show that gν(v) is a density. Since vν(v) is nondecreasing,
d
dv

[vν(v)] exists almost everywhere, d
dv

[vν(v)] ≤ 0 and hence gν(v) ≥ 0. Furthermore,∫ ∞
0

gν(v)dv = −c−1
ν

∫ ∞
0

d

dv
[vν(v)]dv = −c−1

ν vν(v)
∣∣∣∞
v=0

= 1,

where the final equality follows from the assumed behavior of vν(v) at 0 and ∞. Since for a
partition A1, . . . , An, the random variables Θ(A1), . . . ,Θ(An) are independent, it suffices to show
that for any measurable set A (with complement Ā), the random variable Θ(A) has the correct
characteristic function. Define the family of random measures

Θt =
∞∑
k=1

Vke
−(Γk+t)/cνδψk , t ≥ 0,

so Θ0 = Θ. Conditioning on Γ11,

D
(Θt(A) | Γ1 = u) = V1e

−(u+t)/cν 1[ψ1 ∈ A] + Θt+u(A),
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and note that the two terms on the left hand side are independent. We can thus write the character-
istic function of Θt(A) as

ϕ(ξ, t, A) := E[eiξΘt(A)]

= E[E[eiξΘt(A) |Γ1 = u]]

= E[E[eiξV1e−(u+t)/cν1[ψ1∈A]eiξΘt+u(A) |Γ1 = u]]

= E[E[(G(A)eiξV1e−(u+t)/cν
+G(Ā))ϕ(ξ, t+ u,A) |Γ1 = u]]

= G(A)

∫ ∞
0

∫ ∞
0

eiξve
−(u+t)/cν

ϕ(ξ, t+ u,A)gν(v)e−u du dv

+G(Ā)

∫ ∞
0

ϕ(ξ, t+ u,A)e−u du,

where Ā is the complement of A. Multiplying both sides by e−t and making the change of variable
w = u+ t yields

e−tϕ(ξ, t, A) = G(A)

∫ ∞
t

∫ ∞
0

eiξve
−w/cν

ϕ(ξ, w,A)gν(v)e−w dv dw

+G(Ā)

∫ ∞
t

ϕ(ξ, w,A)e−w dw

= G(A)

∫ ∞
t

ϕgν (ξe
−w/cν )ϕ(ξ, w,A)e−wdw

+G(Ā)

∫ ∞
t

ϕ(ξ, w,A)e−wdw,

where ϕgν (a) :=
∫∞

0
eiavgν(v) dv is the characteristic function of a random variable with density

gν . Differentiating both sides with respect to t and rearranging yields

∂ϕ(ξ, t, A)

∂t
= ϕ(ξ, t, A)−G(A)ϕgν (ξe

−t/cν )ϕ(ξ, t, A)− (1−G(A))ϕ(ξ, t, A)

= ϕ(ξ, t, A)G(A)(1− ϕgν (ξe−t/cν )),

so we conclude that

ϕ(ξ, t, A) = exp

(
−G(A)

∫ ∞
t

(1− ϕgν (ξe−u/cν )) du

)
.

Using integration by parts and the definition of gν , rewrite

ϕgν (a) = −c−1
ν

∫ ∞
0

d

dv
[vν(v)]eiav dv

= −c−1
ν vν(v)eiav

∣∣∣∞
v=0

+ c−1
ν

∫ ∞
0

iavν(v)eiav dv

= 1 +

∫ ∞
0

iav

cν
ν(v)eiav dv,
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where the final equality follows from the assumed behavior of vν(v) at 0 and∞. Combining the
previous two displays and setting t = 0 concludes the proof:

ϕ(ξ, 0, A) = exp

(
−G(A)

∫ ∞
0

∫ ∞
0

iξv

cν
e−u/cνeiξve

−u/cν
ν(v) dv du

)
= exp

(
−G(A)

∫ ∞
0

∫ ∞
0

∂

∂u

[
−eiξve−u/cν

]
ν(v) du dv

)
= exp

(
−G(A)

∫ ∞
0

(eiξv − 1)ν(v) dv

)
.

Proof of Theorem 4.2.3. It was already shown that gν(v) is a density. Let Θ′k =
∑Ck

i=1 θkiδψki , so
Θ =

∑∞
k=1 Θ′k. Each Θ′k is a CRM with rate measure cν

ξ
ν ′k(dθ), where ν ′k(dθ) is the law of θki.

Using the product distribution formula we have

ν ′k(dθ) =

∫ 1

0

ξk

Γ(k)
(− logw)k−1wξ−2gν(θ/w) dw dθ. (27)

LetGν(v) =
∫ v

0
gν(x) dx be the cdf derived from gν . From the preceding arguments, conclude that

the rate measure of Θ is

ν ′(dθ) :=
cν
ξ

∞∑
k=1

ν ′k(dθ)

= cν

∫ 1

0

∞∑
k=1

ξk−1

Γ(k)
(− logw)k−1wξ−2gν(θ/w) dw dθ

= cν

∫ 1

0

ξw−2gν(θ/w) dw dθ

= cν

∫ 1

0

ξθ−1 ∂

∂w
[−Gν(θ/w)] dw dθ

= −cνθ−1Gν(θ/w)
∣∣∣1
w=0

dθ

= cνθ
−1(1−Gν(θ)) dθ.

The cdf can be rewritten as

1−Gν(θ) = 1 + c−1
ν

∫ θ

0

d

dx
[xν(x)] dx = 1 + c−1

ν xν(x)
∣∣∣θ
x=0

= c−1
ν θν(θ).

Combining the previous two displays, conclude that ν ′(dθ) = ν(θ) dθ.

Proof of Theorem 4.2.5. Since the power-law representation in Eq. (5) for the case when Vki = 1 
almost surely was previously shown to be BP(γ, α, d) [Broderick et al., 2012], we simply apply the 
stochastic mapping result in Lemma 4.2.4 with κ(θ, du) = θ−1gν (uθ

−1)du, where θ−1gν (uθ
−1) is 

the density of U = V θ | θ under V ∼ gν .
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A.2.2 Proof of the expected number rejections of the R-Rep

Proof of Proposition 4.2.2. We have

E

[
∞∑
k=1

1(θk = 0)

]
= E

[
∞∑
k=1

1

(
dν

dµ
(Vk) ≥ Uk

)]

= E

[
∞∑
k=1

(
1− dν

dµ
(Vk)

)]

=

∫ (
1− dν

dµ
(x)

)
µ(dx),

where the equalities follow from the definition of θk, integrating out Uk, and applying Campbell’s
theorem.

A.2.3 Power-law behavior of the PL-Rep

We now formalize the sense in which power-law representations do in fact produce power-law
behavior. Let Zn |Θ

i.i.d.∼ LP(Poiss,Θ) and yk :=
∑N

n=1 1[znk ≥ 1]. We analyze the number of
non-zero features after N observations,

KN :=
∞∑
k=1

1[yk ≥ 1],

and the number of features appearing j > 1 times after N observations,

KN,j :=
∞∑
k=1

1[yk = j].

In their power law analysis of the beta process, Broderick et al. [2012] use a Bernoulli likeli-
hood process. However, the Bernoulli process is only applicable if θk ∈ [0, 1], whereas in general
θk ∈ R+. Replacing the Bernoulli process with a Poisson likelihood process is a natural choice
since 1[znk ≥ 1] ∼ Bern(1 − e−θk), and asymptotically 1 − e−θk ∼ θk a.s. for k → ∞ since
limk→∞ θk = 0 a.s. Thus, the Bernoulli and Poisson likelihood processes behave the same asymp-
totically, which is what is relevant to our asymptotic analysis. We are therefore able to show that
all CRMs with power-law representations, not just the beta process, have what Broderick et al.
[2012] call Types I and II power law behavior. Our only condition is that the tails of g are not too
heavy.

Theorem A.2.1. Assume that g is a continuous density such that for some ε > 0,

g(x) = O(x−1−d−ε). (28)

Then for Θ← PL-Rep(γ, α, d, g) with d > 0, there exists a constant C depending on γ, α, d, and
g such that, almost surely,

KN ∼ Γ(1− d)CNd, N →∞

KN,j ∼
dΓ(j − d)

j!
CNd, N →∞ (j > 1).
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In order to prove Theorem A.2.1, we require a number of additional definitions and lemmas.
Our approach follows that in Broderick et al. [2012], which the reader is encouraged to consult
for more details and further discussion of power law behavior of CRMs. Throughout this section,
Θ← PL-Rep(γ, α, d, g) with d > 0. By Lemma 4.2.4, Θ ∼ CRM(ν), where

ν(dθ) :=

∫
g(θ/u)u−1νBP(du) dθ

and νBP(dθ) is the rate measure for BP(γ, α, d). Let Πk be a homogeneous Poisson point process
on R+ with rate θk and define

K(t) :=
∞∑
k=1

1[|Πk ∩ [0, t]| > 0]

Kj(t) :=
∞∑
k=1

1[|Πk ∩ [0, t]| = j].

Furthermore, for N ∈ N, let

ΦN := E[KN ] and ΦN,j := E[KN,j] (j > 1)

and for t > 0, let

Φ(t) := E[K(t)] and Φj(t) := E[Kj(t)] (j > 1).

If follows from Campbell’s Theorem [Kingman, 1993] that

Φ(t) = E

[∑
k

(1− e−tθk)

]
=

∫
(1− e−tθ)ν(dθ)

ΦN = E

[∑
k

(1− e−Nθk)

]
= Φ(N)

Φj(t) =

(
N

j

)
E

[∑
k

tj(1− e−θk)j

j!
e−tθk

]
=
tj

j!

∫
(1− e−θ)je−tθν(dθ)

ΦN,j =

(
N

j

)
E

[∑
k

(1− e−θk)je−(N−j)θk

]
=

(
N

j

)∫
(1− e−θ)je−(N−j)θν(dθ).

The first lemma characterizes the power law behavior of Φ(t) and Φj(t). A slowly varying
function ` satisfies `(ax)/`(x)→ 1 as x→∞ for all a > 0.

Lemma A.2.2 (Broderick et al. [2012], Proposition 6.1). If for some d ∈ (0, 1), C > 0, and slowly
varying function `,

ν̄[0, x] :=

∫ x

0

θν(dθ) ∼ d

1− d
C`(1/x)x1−d, x→ 0, (29)

then

Φ(t) ∼ Γ(1− d)Ctd, t→∞

Φj(t) ∼
dΓ(j − d)

j!
Ctd, t→∞ (j > 1).
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Transferring the power law behavior from Φ(t) to ΦN is trivial since Φ(N) = ΦN . The next
lemma justifies transferring the power law behavior from Φj(t) to ΦN,j .

Lemma A.2.3 (Broderick et al. [2012], Lemmas 6.2 and 6.3). If ν satisfies Eq. (1), then

K(t) ↑ ∞ a.s., Φ(t) ↑ ∞, Φ(t)/t ↓ 0.

Furthermore,

|ΦN,j − Φj(N)| < Cj
N

max{Φj(N),Φj+2(N)} → 0.

The final lemma confirms that the asymptotic behaviors of KN and KN,j is almost surely the
same as the expectations of KN and KN,j .

Lemma A.2.4. Assume ν satisfies Eq. (1) and that for some d ∈ (0, 1), C > 0, Cj > 0, and slowly
varying functions `, `′, Φ(t) ∼ C`(t)td and Φj(t) ∼ Cj`(t)t

d. Then for N →∞, almost surely

Kn ∼ ΦN and
∑
i<j

KN,i ∼
∑
i<j

ΦN,i.

Proof of Theorem A.2.1. Combining the three lemmas, the result follows as soon as we show that
ν(dθ) satisfies Eq. (29). C will be a constant that may change from line to line. We begin by
rewriting ν(dθ) using the change of variable w = θ(u−1 − 1):

ν(dθ) = C

∫ 1

0

g(θ/u)u−2−d(1− u)α+d−1 du dθ

= Cθ−1−d
∫ ∞

0

g(w + θ)
wα+d−1

(w + θ)α−1
dw dθ.

Since g(x) is integrable and continuous, for x ∈ [0, 1], it is upper-bounded by the non-integrable
function C0x

−1 for some C0 > 0. Combining this upper bound with Eq. (28) yields g(x) ≤
φ(x) := C0x

−11[x ≤ 1] + C1x
−1−d−ε1[x > 1] for some C1 > 0, so

g(w + θ)
wα+d−1

(w + θ)α−1
≤ φ(w)wd.

Since φ(w)wd is integrable, by dominated convergence the limit

L = lim
θ→0

∫ ∞
0

g(w + θ)
wα+d−1

(w + θ)α−1
dw

exists and is finite. Moreover, since g(x) is a continuous density, there exists M > 0 and 0 < a <
b <∞ such that g(x) ≥M for all x ∈ [a, b]. Hence, for θ < a,∫ ∞

0

g(w + θ)
wα+d−1

(w + θ)α−1
dw ≥M

∫ b−θ

a−θ

wα+d−1

(w + θ)α−1
dw > 0,
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so L > 0. Thus,

ψ(θ) := θ

∫ 1

0

g(θ/u)u−2−d(1− u)α+d−1 du → Cθ−d, θ → 0

and hence for δ > 0 and θ sufficiently small, |ψ(θ)− Cθ−d| < δ. Thus, for x sufficiently small,∫ x

0

ψ(θ) dθ ≤
∫ x

0

Cθ−d dθ +

∫ x

0

|ψ(θ)− Cθ−d| dθ

≤ C x1−d

1− d
+ δx

∼ C x1−d

1− d
, x→ 0,

which shows that Eq. (29) holds.

A.3 Proofs of CRM truncation bounds

A.3.1 Protobound
Lemma A.3.1 (Protobound). Let Θ and Θ′ be two discrete random measures. Let X1:N be a
collection of random measures generated i.i.d. from Θ with supp(Xn) ⊆ supp(Θ), and let Y1:N

be a collection of random variables where Yn is generated from Xn via Yn |Xn ∼ f(· |Xn).
Define Z1:N and W1:N analogously for Θ′. Finally, define Q := 1 [supp(X1:N) ⊆ supp(Θ′)]. If
(X1:N |Θ,Θ′, Q = 1)

D
= (Z1:N |Θ′,Θ) almost surely under the joint distribution of Θ,Θ′, then

1

2
‖pY − pW‖1 ≤ 1− P(Q = 1),

where pY , pW are the marginal densities of Y1:N and W1:N .

Proof of Lemma 4.3.1. This is the direct application of Lemma A.3.1 to CRMs, where Θ ∼
CRM(ν), and Θ′ is a truncation Θ′ = ΘK . The technical condition is satisfied because the weights
in X1:N are sampled independently for each atom in Θ.

Proof of Lemma 4.4.1. This is the direct application of Lemma A.3.1 to NCRMs, where Θ is the
normalization of a CRM with distribution CRM(ν), and Θ′ is the normalization of its truncation.
The technical condition is satisfied because the conditioning on X1:N ⊆ supp(Θ′) is equivalent to
normalization of Θ′.

Proof of Lemma A.3.1. We begin by expanding the 1-norm and conditioning on both Θ and Θ′

(denoted by conditioning on Θ̃ := (Θ,Θ′) for brevity):

‖pY − pW‖1 =

∫ ∣∣∣∣∣E
[

N∏
n=1

f(yn|Zn)

]
− E

[
N∏
n=1

f(yn|Xn)

]∣∣∣∣∣ dy
=

∫ ∣∣∣∣∣E
[
E

[
N∏
n=1

f(yn|Zn)|Θ̃

]
− E

[
N∏
n=1

f(yn|Xn)|Θ̃

]]∣∣∣∣∣ dy.
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Then conditioning on Q,

E

[
N∏
n=1

f(yn|Xn)|Θ̃

]
= E

[
E

[
N∏
n=1

f(yn|Xn)|Θ̃, Q

]
|Θ̃

]
a.s.
= P(Q = 1|Θ̃)E

[
N∏
n=1

f(yn|Zn)|Θ̃

]
+ P(Q = 0|Θ̃)E

[
N∏
n=1

f(yn|Xn)|Θ̃, Q = 0

]
,

where the first term arises from the fact that for any function φ,

E
[
φ(Z1:N)|Θ̃

]
a.s.
= E

[
φ(X1:N)|Θ̃, Q = 1

]
,

because X1:N |Θ̃, Q = 1 is equal in distribution to Z1:N |Θ̃ a.s. by assumption. Substituting this
back in above,

‖pY − pW‖1 (30)

=

∫ ∣∣∣∣∣E
[
P(Q = 0|Θ̃)

(
E

[
N∏
n=1

f(yn|Zn)|Θ̃

]
− E

[
N∏
n=1

f(yn|Xn)|Θ̃, Q = 0

])]∣∣∣∣∣ dy
≤
∫

E

[
P(Q = 0|Θ̃)

∣∣∣∣∣E
[

N∏
n=1

f(yn|Zn)|Θ̃

]
− E

[
N∏
n=1

f(yn|Xn)|Θ̃, Q = 0

]∣∣∣∣∣
]

dy

≤
∫

E

[
P(Q = 0|Θ̃)

(
E

[
N∏
n=1

f(yn|Zn)|Θ̃

]
+ E

[
N∏
n=1

f(yn|Xn)|Θ̃, Q = 0

])]
dy,

and finally by Fubini’s Theorem,

‖pY − pW‖1

≤ E

[
P(Q = 0|Θ̃)

(
E

[∫ N∏
n=1

f(yn|Zn)dy|Θ̃

]
+ E

[∫ N∏
n=1

f(yn|Xn)dy|Θ̃, Q = 0

])]
= E

[
P(Q = 0|Θ̃)

(
E
[
1|Θ̃
]

+ E
[
1|Θ̃, Q = 0

])]
= 2P(Q = 0) = 2(1− P(Q = 1)).

Proof of Propositions 4.3.2 and 4.4.2. The same proof applies to both results. Since G is non-
atomic and Ψ is Borel, there exists a measurable mapping T : Ψ → R such that the random
variable T (ψ), ψ ∼ G, is non-atomic. For an atomic measure % =

∑K%
k=1 wkδψk on Ψ, define

S(%, T ) :=

K%∑
k=1

T (ψk).

Let ψi
′ i.i.d.∼ G, TX := #{k | xk > 0∧zk = 0} < ∞, and TZ := #{k | zk > 0∧xk = 0}. Conditional 

on Q = 0, there exists n ∈ [N ] such that TXn ≥ 1 since Xn has at least one atom that Zn lacks.
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Using these definitions and facts, observe that

E[S(Xn, T )− S(Zn, T ) |Q = 0]

= E

[
TXn∑
i=1

T (ψ′i)−
TZn∑
j=1

T (ψ′j) |Q = 0

]

= E

[
∞∑

tX=1,tZ=0

P(TXn = tX , TZn = tZ |Q = 0)

× E

[
tX∑
i=1

T (ψ′i)−
tZ∑
j=1

T (ψ′j) |TXn = tX , TZn = tz, Q = 0

]]
.

Since TXn ≥ 1, V (tX , tZ) :=
∑tX

i=1 T (ψ′i)−
∑tZ

j=1 T (ψ′j) is a finite sum of one or more non-atomic
random variables, so V (tX , tZ) is itself non-atomic. It then follows that ∆ := S(X, T )− S(Z, T )
is non-atomic. Thus, by Lemma A.1.2, for any δ, there exists εδ > 0 such that P(|∆| < εδ) < δ.
Define the family of likelihoods fδ(· | %) = Unif[S(%, T )−εδ/2, S(%, T )+εδ/2]. Let f = fδ. Then,
conditioned on Q = 0, with probability at least 1 − δ, f(y |Xn) > 0 =⇒ f(y |Zn) = 0 and
f(y |Zn) > 0 =⇒ f(y |Xn) = 0, which implies that both inequalities in Eq. (30) are equalities.
Hence, we conclude that ‖pY − pW‖1 ≥ 2(1− δ)P(Q = 0).

A.3.2 Series representation truncation
Recall from Section 4.3.1 that a series representation generally has the form

Θ =
∞∑
k=1

θkδψk θk = τ(Vk,Γk) Vk
i.i.d.∼ g,

where Γk =
∑k

`=1 E`, E`
i.i.d.∼ Exp(1), are the jumps in a unit-rate homogeneous Poisson point pro-

cess, τ : R+×R+ → R+ is a measurable function, g is a distribution on R+, and limu→∞ τ(v, u) =
0 for g-almost every v. Note that by Lemma A.1.3 π̄(0) = 0, where π̄(x) := 1 − π(x). This fact
will repeatedly prove useful for the proofs in this section.

The proof of Theorem 4.3.3 is based on the following lemma.

Lemma A.3.2. Under the same hypotheses as Theorem 4.3.3,

P(supp(X1:N) ⊆ supp(ΘK))

= E
[
exp

{
−
∫ ∞

0

(
1−

∫ ∞
0

π(τ(v, u+GK))Ng(dv)

)
du

}]
.

(31)

Proof. Let

p(t,K) := E

[
∞∏

k=K+1

π (τ(Vk,Γk + t))N
]
,
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so p(0, K) = P(supp(X1:N) ⊆ supp(ΘK)). We use the proof strategy from Banjevic et al. [2002]
and induction in K. For K = 0,

p(t, 0) = E

E
π (τ(V1, u+ t))N

∞∏
k=2

π

(
τ

(
Vk,

∑
1<j≤k

Ej + u+ t

))N ∣∣∣∣∣Γ1 = u


=

∫ ∞
0

∫
π (τ(v, u+ t))N p(u+ t, 0)e−u g(dv) du

since the Vk are i.i.d. Multiplying both sides by e−t and making the change of variable w = u + t
yields

e−tp(t, 0) =

∫ ∞
t

∫
π (τ(v, w))N p(w, 0)e−w g(dv) dw.

Differentiating both sides with respect to t and rearranging yields

∂p(t, 0)

∂t
= p(t, 0)

(
1−

∫
π (τ(v, t))N g(dv)

)
. (32)

Since limu→∞ τ(v, u) = 0 and π(0) = 1 by Lemma A.1.3, we can solve Eq. (32) and conclude
that

p(t, 0) = exp

{
−
∫ ∞
t

(
1−

∫
π (τ(v, u))N g(dv)

)
du

}
= exp

{
−
∫ ∞

0

(
1−

∫
π (τ(v, u+ t))N g(dv)

)
du

}
.

We use the inductive hypothesis that

p(t,K) = E[p(t+GK , 0)], GK ∼ Gam(K, 1), G0 = 0,

which trivially holds for K = 0. If the inductive hypothesis holds for some K ≥ 0, then using the
tower property,

p(t,K + 1) = E

E
 ∞∏
k=K+2

π

(
τ

(
(Vk,

∑
1<j≤k

E1j + u+ t

))N ∣∣∣∣∣Γ1 = u


= E[p(t+ E1, K)], E1 ∼ Exp(1)

= E[p(t+GK + E1, 0)]

= E[p(t+GK+1, 0)].

Eq. (31) follows by setting t = 0.

Proof of Theorem 4.3.3. The main result follows by combining Lemmas 4.3.1 and A.3.2, applying
Jensen’s inequality, then using monotone convergence. The upper bound 1− e−BN,K ≤ 1 follows
immediately from the fact that the integral∫ ∞

0

(
1− E

[∫ ∞
0

π(τ(v, u+GK))Ng(dv)

])
du

54
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



is non-negative.
Fix N . It follows from Eq. (2) that

lim
K→∞

1− P(supp(X1:N) ⊆ supp(ΘK))→ 0.

It then follows from Lemma A.1.1 that 1 − e−ωN,K
P→ 0, where ωN,K :=∫∞

0

(
1−

∫∞
0
π(τ(v, u+GK))Ng(dv)

)
du. By the continuous mapping theorem, conclude that

ωN,K
P→ 0 as K →∞ and hence BN,K = E[ωN,K ]→ 0 as K →∞.

Theorem A.3.3 (Inverse-Lévy representation truncation error). For Θ ← IL-Rep(ν), the conclu-
sions of Theorem 4.3.3 hold with

BN,K = N

∫ ∞
0

FK(ν[x,∞))(1− π(x)) ν(dx).

Proof. We have from Theorem 4.3.3 that

BN,K = NE
[∫ ∞

0

(1− π(ν←(u+GK)) du

]
.

We first make the change of variables x = ν←(u) to obtain∫ ∞
0

π̄(ν←(u+GK)) du =

∫ ∞
GK

π̄(ν←(u)) du =

∫ ν←(GK)

0

π̄(x)ν(dx)

Finally, use the fact that for all a, b ≥ 0, ν←(a) ≥ b ⇐⇒ a ≤ ν ([b,∞)) and monotone
convergence:

BN,K = NE

[∫ ν←(GK)

0

π̄(x) ν(dx)

]

= NE
[∫ ∞

0

1[x ≤ ν←(GK)]π̄(x) ν(dx)

]
= NE

[∫ ∞
0

1[GK ≤ ν[x,∞)]π̄(x) ν(dx)

]
= N

∫ ∞
0

FK(ν[x,∞))π̄(x) ν(dx).

Theorem A.3.4 (Thinning representation truncation error). For Θ ← T-Rep(ν), the conclusions
of Theorem 4.3.3 hold with

BN,K = N

∫ ∞
0

(1− π(v))

∫ dν
dg

(v)

0

FK

(
dν

dg
(v)− u

)
du g(v)dv.
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Proof. We have from Theorem 4.3.3 that

BN,K = NE
[∫ ∞

0

∫ ∞
0

π̄

(
v1

[
dν

dg
(v) ≥ u+GK

])
du g(v)dv

]
Since π̄(0) = 0, using monotone convergence we have

BN,K = N

∫ ∞
0

π̄(v)

∫ ∞
0

E
[
1

[
dν

dg
(v) ≥ u+GK

]]
du g(v)dv

= N

∫ ∞
0

π̄(v)

∫ ∞
0

FK

(
dν

dg
(v)− u

)
du g(v)dv

= N

∫ ∞
0

π̄(v)

∫ dν
dg

(v)

0

FK

(
dν

dg
(v)− u

)
du g(v)dv

= N

∫ ∞
0

π̄(v)

∫ dν
dg

(v)

0

FK (u) du g(v)dv.

Theorem A.3.5 (Rejection representation truncation error). For Θ ← R-Rep(ν), the conclusions
of Theorem 4.3.3 hold with

BN,K = N

∫ ∞
0

FK(µ[x,∞))(1− π(x)) ν(dx).

Proof. We have from Theorem 4.3.3 that

BN,K = NE
[∫ ∞

0

∫ 1

0

π̄

(
µ←(u+GK)1

[
dν

dµ
(µ←(u+GK)) ≥ v

])
dv du

]
Since π̄(0) = 0, we can eliminate the innermost integral:∫ 1

0

π̄

(
µ←(u+GK)1

[
dν

dµ
(µ←(u+GK)) ≥ v

])
dv

=
dν

dµ
(µ←(u+GK))π̄(µ←(u+GK)).

Making the change of variable x = µ←(u+GK) and reasoning analogously to the proof of Theo-
rem A.3.3, we obtain

BN,K = NE

[∫ µ←(GK)

0

dν

dµ
(x)π̄(x)µ(dx)

]
= N

∫ ∞
0

FK(µ[x,∞))π̄(x)ν(dx).

Theorem A.3.6 (Bondesson representation truncation error). For Θ← R-Rep(ν), the hypotheses
of Theorem 4.3.3 are satisfied and its conclusions hold with

BN,K = N

∫ ∞
0

(
1− E

[
π(ve−GK )

])
ν(dv).

56
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Proof. While Theorem A.3.6 can be proved using Theorem 4.3.3, we take an alternative approach
using more direct Poisson process arguments.

Lemma A.3.7. For K ≥ 0, GK ∼ Gam(K, c), and G0 = 0,

P(supp(X1:N) ⊆ supp(ΘK)) = E
[
exp

{
−
∫ ∞

0

(
1− π(ve−GK )N

)
ν(dv)

}]
.

Proof of Lemma A.3.7. For t ≥ 0, the measure tΘ has distribution tΘ ∼ CRM(νt) where
νt(dθ) := ν(dθ/t). Further, define X̃n |Θ

i.i.d.∼ LP(h, tΘ), and

p(t,K) := P(supp(X̃1:N) ⊆ supp(tΘK)) = E

[
∞∏

k=K+1

π
(
tVke

−Γk/c
)N]

.

We will prove that

p(t,K) = E
[
exp

{
−
∫ ∞

0

(
1− π(tve−GK )N

)
ν(dv)

}]
,

and then set t = 1 to obtain the desired result. The proof proceeds by induction. For K = 0, the
event supp(X̃1:N) ⊆ supp(tΘK) is equal to supp(X̃1:N) ⊆ ∅ and thus supp(X̃1:N) = ∅. This is
in turn equivalent to the probability that after thinning a CRM(νt) by π(θ) N times, the remaining
process has no atoms, i.e. the probability that CRM

((
1− π(θ)N

)
νt(dθ)

)
has no atoms. Since a

Poisson process with measure µ(dθ) has no atoms with probability e−
∫
µ(dθ),

p(t, 0) = exp

(
−
∫ ∞

0

(
1− π(θ)N

)
νt(dθ)

)
= E

[
exp

(
−
∫ ∞

0

(
1− π(tve−G0)N

)
ν(dv)

)]
.

The second equality follows by the change of variables v = θ/t and because G0 = 0 with proba-
bility 1. The inductive hypothesis is that for K ≥ 0,

p(t,K) = E
[
p
(
te−GK , 0

)]
, GK ∼ Gam(K, c).

Using the tower property to condition on Γ1/c and the fact that the Vk are i.i.d.,

p(t,K + 1) = E

[
∞∏

k=K+2

π
(
tVke

−Γk/c
)N]

= E

[
E

[
∞∏

k=K+1

π
(
te−Γ1/cVke

−Γk/c
)N |Γ1/c

]]
= E

[
p
(
te−Γ1/c, K

)]
= E

[
p
(
te−(Γ1/c+GK), 0

)]
= E

[
p
(
te−GK+1 , 0

)]
,

since Γ1/c ∼ Exp(c). The desired result follows by setting t = 1.

First combine Lemmas 4.3.1 and A.3.7, then apply Jensen’s inequality. The bounds on BN,K

and fact that limK→∞ BN,K = 0 follows by the same arguments as in the proof of Theorem 4.3.3.
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A.3.3 Superposition representation truncation
Proof of Theorem 4.3.4. We begin with Lemma 4.3.1, and note that

P (supp(X1:N) ⊆ supp(ΘK)) = P
(
supp(X1:N) ∩ supp(Θ+

K) = ∅
)
.

After generating X1:N from Θ, we can view the point process representing the atoms in Θ+
K not

contained in any Xn as Θ+
K thinned by π(θ)N (i.e. the Bernoulli trial with success probability

1 − π(θ) to generate an atom failed N times), and thus the remaining process is Θ+
K thinned by

1−π(θ)N . Therefore, the above event is equivalent to the event that Θ+
K thinned by 1−π(θ)N has

no atoms. Using the fact that a Poisson process with measure µ(dθ) has no atoms with probability
e−

∫
µ(dθ), we have the formula for BN,K ,

P (supp(X1:N) ⊆ supp(ΘK)) = e−
∫
(1−π(θ)N)ν+

K(dθ).

Since BN,K :=
∫ (

1− π(θ)N
)
ν+
K(dθ) is nonnegative, the error bound lies in the interval [0, 1]. To

show that limK→∞BN,K = 0, first note that∫ (
1− π(θ)N

)
ν(dθ) ≤ N

∫
(1− π(θ)) ν(dθ) = N

∞∑
x=1

∫
h(x | θ)ν(dθ) <∞, (33)

by Eq. (2). Further, splitting ν into its individual summed components, we have that∫
(1− π(θ))ν(dθ) =

K∑
k=1

∫
(1− π(θ))νk(dθ) +

∫
(1− π(θ))ν+

K(dθ). (34)

Combining the results from Eqs. (33) and (34) yields

lim
K→∞

∫
(1− π(θ))ν+

K(dθ) = 0.

A.3.4 Stochastic mapping truncation

Proof of Proposition 4.3.5. Let π̃(u) = h̃(0 |u). For notational brevity, define Q to be the
event where supp(X1:N) ⊆ supp(ΘK), and Q̃ to be the corresponding transformed event where
supp(X̃1:N) ⊆ supp(Θ̃K). Then we have

P(Q̃) = E
[∏∞

k=K+1π̃(uk)
Ñ
]
.

If h(x | θ) = Bern(x; 1− πκ,Ñ(θ)) and N = 1, then

P(Q̃) = E
[∏∞

k=K+1

∫
π̃(u)Ñκ(θk, du)

]
= P(Q).
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A.3.5 Truncation with hyperpriors
Proof of Proposition 4.3.6. By repeating the proof of Lemma 4.3.1 in Appendix A.3.1, except with
an additional use of the tower property to condition on the hyperparameters Φ, an additional use
of Fubini’s theorem to swap integration and expectation, and Jensen’s inequality, we have

1

2
‖pY − pW‖1 ≤ E [1− P (supp(X1:N) ⊆ supp(ΘK) |Φ)]

≤ E
[
1− e−BN,K(Φ)

]
≤ 1− e−E[BN,K(Φ)].

A.4 Proofs of normalized truncation bounds
Proof of Lemma 4.4.3. First, we demonstrate that the arg max is well-defined. Note that

arg max
i∈N

Ti + log pi = arg max
i∈N

exp (Ti + log pi)

if it exists, due to the monotonicity of exp. Similarly, existence of either proves the existence of
the other. Since Ti are i.i.d. Gumbel(0, 1),

P (exp (Ti + log pi) > ε) = 1− exp
(
−e−(log ε−log pi)

)
= 1− exp (−pi/ε) ≤ 1− (1− pi/ε).

Therefore,
∞∑
i=1

P (exp (Ti + log pi) > ε) ≤
∞∑
i=1

1− (1− pi/ε) = ε−1

∞∑
i=1

pi <∞.

This is sufficient to demonstrate that

exp (Ti + log pi)
a.s.→ 0 as i→∞.

Finally, since any positive sequence converging to 0 can have only a finite number of elements
greater than any ε > 0, set ε = exp(T1 + log p1), and thus

arg max
i∈N

exp (Ti + log pi) = arg max
i:Ti+log pi≥ε

exp (Ti + log pi)

where the right hand side exists because it computes the maximum of a finite, nonempty set of
numbers. Note that the arg max is guaranteed to be a single element, since Ti + log pi has a purely
diffuse distribution on R.

Now that the a.s. existence and uniqueness of the arg max has been demonstrated, we can
compute its distribution. First, note that

P (Ti + log pi ≤ x∀i ∈ N, i 6= j) =
∞∏

i=1,i6=j

exp
(
−e−(x−log pi)

)
= exp

(
−e−x(s− pj)

)
,
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where s :=
∑

i pi. So then

P
(
j = arg max

i∈N
Ti + log pi

)
= P (Ti + log pi ≤ Tj + log pj ∀i ∈ N)

=

∫
e−e

−x(s−pj)e−(x−log pj+e
−(x−log pj))dx

= pj

∫
e−se

−x
e−xdx

=
pj∑
i pi

∫
e−e

−(x−log s)

e−(x−log s)dx

=
pj∑
i pi

,

where the last integral is 1 since its integrand is the Gumbel(s, 1) density.

A.4.1 Normalized series representation truncation
Proof of Theorem 4.4.4. First, we apply Lemma 4.4.1,

1

2
‖pY − pW‖1 ≤ 1− P (X1:N ⊆ supp(ΞK)) .

Next, by Jensen’s inequality,

P (X1:N ⊆ supp(ΞK)) = E

[(
ΘK (Ψ)

Θ (Ψ)

)N]
≥ E

[
ΘK (Ψ)

Θ (Ψ)

]N
= P(X1 ∈ supp(ΞK))N .

The remaining part of this proof quantifies the probability that sampling X1 from Ξ generates an
atom in the support of ΞK (equal to the support of ΘK , since Ξ is just the normalization of Θ).
To do this, we use the trick based on Lemma 4.4.3: we log-transform the rates in Θ, perturb them
all by i.i.d. Gumbel random variables, and quantify the probability that the max occurs within the
atoms of ΘK .

First, we split the sequential representation of Θ into the truncation ΘK and its tail Θ+
K , using

the form from Eq. (6),

Θ =
∞∑
k=1

τ(Vk,Γk)δψk =
K∑
k=1

τ(Vk,Γk)δψk +
∞∑

k=K+1

τ(Vk,Γk)δψk := ΘK + Θ+
K .

Next, we define the maximum of the log-transformed, Gumbel perturbed rates in ΘK as

MK := max
1≤k≤K

log τ(Vk,Γk) +Wk,

where Wk 
i.i.d.∼ Gumbel(0, 1). Since Γk are from a unit-rate homogeneous Poisson process, if we 

condition on the value of ΓK , this is equivalent to conditioning on the event that the Poisson 
process
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has exactly K − 1 atoms on [0,ΓK ], and the K th atom is at ΓK . And since MK does not depend on
the ordering of (Γk)

K
k=1,

MK |ΓK
D
= max

{
log τ(VK ,ΓK) +WK , max

1≤k≤K−1
log τ(Vk, Uk) +Wk

}
,

where Uk
i.i.d.∼ Unif(0,ΓK). Therefore, MK |ΓK is the maximum of a collection of independent

random variables, so we can compute its CDF by simply taking the product of the CDFs of each
of those random variables. Using standard techniques for transformation of independent random
variables, we have that

P (log τ(Vk, Uk) +Wk ≤ x |ΓK) =

∫ ∞
0

∫ 1

0

g(v)e−τ(v,ΓKu)e−xdudv, k < K

P (log τ(VK ,ΓK) +WK ≤ x |ΓK) =

∫ ∞
0

g(v)e−τ(v,ΓK)e−xdv,

so

P (MK ≤ x |ΓK) =

(∫ ∞
0

∫ 1

0

g(v)e−τ(v,ΓKu)e−xdudv

)K−1(∫ ∞
0

g(v)e−τ(v,ΓK)e−xdv

)
.

Defining the function

J(u, t) := E
[
e−t·τ(V,u)

]
, V ∼ g,

we have

P (MK ≤ x |ΓK) =

(∫ 1

0

J
(
ΓKu, e

−x) du

)K−1

J
(
ΓK , e

−x) .
Next, we define an analogous maximum for the tail process rates in Θ+

K ,

M+
K := sup

k>K
log τ(Vk,Γk) +Wk.

Conditioning on ΓK , we have

M+
K |ΓK

D
= sup

k≥1
log τ(Vk,Γ

′
k + ΓK) +Wk,

where Γ′k is a unit-rate homogeneous Poisson process on R+. Now note that since Γ′k is a Poisson
point process on R+, so is log τ(Vk,Γ

′
k + ΓK) + Wk (using Poisson process stochastic mapping),

with rate measure (∫ ∞
0

∫ ∞
0

e−(t−log τ(v,u+ΓK))−e−(t−log τ(v,u+ΓK ))

g(v)dudv

)
dt.

Therefore, P
(
M+

K ≤ x |ΓK
)

is equal to the probability that the above Poisson point process has no
atoms with position greater than x. Since a Poisson process on R+ with measure µ has no atoms
above x with probability e−

∫∞
x µ(dt),

P
(
M+

K ≤ x |ΓK
)

= e
−
∫∞
x

(∫∞
0

∫∞
0 e−(t−log τ(v,u+ΓK ))−e−(t−log τ(v,u+ΓK ))

g(v)dudv

)
dt
.
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Noticing that the integrand in t is a Gumbel density, we can use Fubini’s theorem to swap integrals
and evaluate:

P
(
M+

K ≤ x |ΓK
)

= e
∫∞
0

∫∞
0

(
e−τ(v,u+ΓK )e−x−1

)
g(v)dudv

= e
∫∞
0 (J(u+ΓK ,e

−x)−1)du.

Taking the derivative yields the density of M+
K |ΓK with respect to the Lebesgue measure. There-

fore, using the Gumbel-max trick from Lemma 4.4.3, we substitute the results for MK |ΓK and
M+

K |ΓK into the original bound yielding

1

2
‖pY − pW‖1 ≤ 1− P (X1 ⊆ supp(ΞK))N

= 1−
(
1− E

[
P
(
MK < M+

K |ΓK
)])N

,

where (using the substitution t = e−x)

P
(
MK < M+

K |ΓK
)

=

∫ ∞
−∞

P (MK ≤ x |ΓK)
d

dx
P
(
M+

K ≤ x |ΓK
)

dx

=

∫ ∞
0

J (ΓK , t)

(∫ 1

0

J (ΓKu, t) du

)K−1(
− d

dt
e
∫∞
0 (J(u+ΓK ,t)−1)du

)
dt.

The fact that the bound is between 0 and 1 is a simple consequence of the fact
that P (X1 ∈ supp(ΞK)) ∈ [0, 1], and the asymptotic result follows from the fact that
P (X1 ∈ supp (ΞK))→ 1 as K →∞.

A.4.2 Normalized superposition representation truncation
Proof of Theorem 4.4.5. The same initial technique as in the proof of Theorem 4.4.5 yields

1

2
‖pY − pW‖1 ≤ 1− P (X1 ∈ supp (ΞK))N .

The remaining part of this proof quantifies the probability that sampling X1 from Ξ generates an
atom in the support of ΞK . Since most of the following developments are similar for ΘK , νK
and Θ+

K , ν
+
K , we will focus the discussion on ΘK , νK and reintroduce the tail quantities when

necessary. First, we transform the rates of ΘK under the stochastic mapping w = log θ + W ,
where W i.i.d.∼ Gumbel(0, 1), resulting in a new Poisson point process with rate measure(∫

e−(t−w)−e−(t−w)

ewνK(ew)dw

)
dt.

The probability that all points in this Poisson point process are less than a value x is equal to the
probability that there are no atoms above x. Defining MK to be the supremum of the points in this
process, combined with the basic properties of Poisson point processes, we have

P(MK ≤ x) = exp

(
−
∫ ∞
x

∫
e−(t−w)−e−(t−w)

ewνK(ew)dwdt

)
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Using Fubini’s theorem to swap the integrals, we can evaluate the inner integral analytically by
noting the integrand is a Gumbel(w, 1) density,

P(MK ≤ x) = exp

(
−
∫

(1− e−e−(x−w)

)ewνK(ew)dw

)
= exp

(∫ (
e−θe

−x − 1
)
νK(dθ)

)
.

We can take the derivative with respect to x to obtain its density with respect to the Lebesgue mea-
sure. The above derivation holds true for Θ+

K , replacing νK with ν+
K and MK with M+

K . Therefore,
using the Gumbel-max trick from Lemma 4.4.3, we substitute the results for MK and M+

K into the
original bound, yielding

1

2
‖pY − pW‖1 ≤ 1− P (X1 ∈ supp (ΘK))N

= 1−
(
1− P

(
MK < M+

K

))N
,

where (using the substitution t = e−x, and the fact that θe−θt is dominated by θ to swap integration
and differentiation)

P
(
MK < M+

K

)
=

∫ ∞
−∞

P(MK ≤ x)
d

dx
P
(
M+

K ≤ x
)

dx

=

∫ ∞
−∞

e
∫ (
e−θe

−x−1
)
ν(dθ) d

dx

(∫ (
e−θe

−x − 1
)
ν+
K(dθ)

)
dx

= −
∫ ∞

0

e
∫
(e−θt−1)ν(dθ) d

dt

(∫ (
e−θt − 1

)
ν+
K(dθ)

)
dt

=

∫ ∞
0

e
∫
(e−θt−1)ν(dθ)

(∫
θe−θtν+

K(dθ)

)
dt.

The fact that the bound lies between 0 and 1 is a simple consequence of the fact that
P (X1 ∈ supp(ΞK)) ∈ [0, 1]. The fact that the error bound asymptotically approaches 0 is a con-
sequence of the monotone convergence theorem applied to the decreasing sequence of functions
θν+

K(dθ).

A.4.3 Truncation with hyperpriors
Proof of Proposition 4.4.6. By repeating the proof of Lemma 4.4.1 in Appendix A.3.1, except with
an additional use of the tower property to condition on the hyperparameters Φ, an additional use
of Fubini’s theorem to swap integration and expectation, and Jensen’s inequality, we have

1

2
‖pY − pW‖1 ≤ E [1− P (X1:N ⊆ supp(ΘK) |Φ)]

≤ 1− E
[
(1−BK(Φ))N

]
≤ 1− (1− E [BK(Φ)])N .
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List of Acronyms

Acronym Full Phrase
BNP Bayesian nonparametrics
BP Beta process
BPP Beta prime process
B-rep Bondesson representation
CDF Cumulative density function
CRM Completely random measure
DB-Rep Decoupled Bondesson representation
DP Dirichlet process
ΓP Gamma process
IL-Rep Inverse-Lévy representation
LP Likelihood process
LomP Lomax process
MCMC Markov Chain Monte Carlo
NCRM Normalized completely random measure
NΓP Normalized gamma process
PL-rep Power-law representation
R-rep Rejection representation
SB-rep size-biased representation
T-rep Thinning representation
VB Variational Bayes
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